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PURPOSE This study optimized stopword removal to enhance topic modeling
performance. We propose an objective method combining normalized pointwise
mutual information (NPMI) with median-based term frequency-inverse document
frequency (TF-IDF) to automatically generate stopwords. METHODS Using text data
from 443 research papers on “Taekwondo sparring,’ we selected stopword candidates
based on NPMI and identified 30 words with the lowest TF-IDF scores. We examined

the impact of removing 1-30 stopwords on u_mass coherence scores. RESULTS
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The NPMI-TF-IDF method significantly improved coherence (R* = .456; p < .001).
However, excessive removal led to diminishing returns, with the optimal coherence
score (—11.442) achieved at 200 stopwords. In contrast, manually selected stopwords
yielded a lower coherence score (—16.001). The findings indicate that integrating TF—
IDF with NPMI effectively preserves meaningful words and outperforms PMI* and PMI?

approaches. CONCLUSIONS Manual stopword selection can reduce reproducibility.
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7 A9eHKim, 2005). 134 Y8842 2d4or AR
S HA R oF7] wiito] 5 YT ARREE Aot AEo] &
7Fs/do] EAskH, olgst AL AT AT AlF e
Aofolz +8 2102 XA Eof g}

olggt AL FE5H] Yol HLell= HlHolE et HAlzd 7]
W] §AE utolyd o] EYPE|low, E5] A dEd I3
(Latent Dirichlet Allocation, LDA)S 7|8t0. 2 3t E¥] ZdEgo]
A4 A5g SAFCE 1231 4= Qe HEd £4 & A
ZFct(Blei et al., 2003).
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Optimizing stopword removal based on domain-specific characteristics is essential.
Future research should validate this method across diverse fields to establish a more
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(Jung, 2024: Jang & Bang, 2025). & €°] ‘54’, ‘54, &
o} 22 dols AR Aot 7[eEd Aol A e W
gog Z-gEu, o]Z QI3 Toj9] ¥k 7|¥ FITo R 349
oulg Ags] metolr] ojPrt, wEtA] HAE EHNA UER=
E4eth Aol 4742 B8] A9 A3t BeAR1 LAR of A
A, o= & FHEGE EY HHFO] AR GAVE A A
u| A= JFo] o ZA verd =

APAtolrls Bl A2 GA9 AE FEE] ol ol
b AEA S AR F(Pointwise Mutual Information, PMI)S &8
gt A5 E-80] B4 S At tHChurch & Hanks, 1990).
=y 59 ©@ojofl =2 PMI gto] o A9, 8 4ot &8
o2 AR EHE 5 AUtk dA7F AFEHAHCroft et al., 2010).
o]% Lee and In(2017) PMI 7|8t 45 E-80] B4 T41& A&
ot} SFE(Perplexity)g B713t 23, 7|2 EF E80] 2AER
ot 32 S{TE HojFgioky Bustg oy, 712 PMIZF st
A ol £2] H|w 7t o Frh= ARMS FZith ool Role and
Nadif(2011)= o] 7+ 9ud A3gdE JustA B7FE 5= Q=
AF3kE NPMI(Normalized PMDE AA|519 2., TF-IDF(Term
Frequency-Inverse Document Frequency) ¥A] ©@o] 5%
£ AFHoR Wrlet= EHA WA 08 FEE o] gH(Grin &
Hornik, 2011; Manning et al., 2008).
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oph A% et Hop HAE vloly T AT A7AY FHEL
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A3k ©l =20 Aot

2 A9 5HE 5] Yol AT g B A(Research
Information Sharing Service; RISS)E &-83lo] ‘HHE AZ7|
£ 7|9=2 AAEgoH, 200285 E AT 2 AFEA 20244
129717 SA1E 44399 =2 6. 2400 7 ==9
TE 252 O R dolEg F&oto] 85191, 2002dd =
gt 250] JUTAE AE =59 A= A3 ZAdsto] HolE
NEE 5ot

E3E £ A= KCIo 3718 =S o]-&oto] tlojgE &4
g Zo|BR HE 9] 7| HEE 4o ¥3](IRB)Y] AAE XdstA] ¢
S¥th(American Psychological Association, 2017).
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(Eq. 1) NPMI A& F4]92, Role and Nadif(2011)7} A<t
gk 718 PMIE 7§A1gt ®4om, ©ho] 7t 37] 3L (co-occurrence
matrix)& Ho} A=A QA BT 5 glo] 4 who] Aol B4 U]
ol T 54k APeS Bt HEs] vrdE 4= qlot E3], 4
Fhof] k2 NPMI #o] 00l 71712 TolE2 A& E2{Ql W
A 54T 7HsAo] ol 8ol 7ol Tkl BalstoiTt.

oF&# NPMIE ©ol & 7ho] A4S HE Afslsto] thol 2t 9
vy TAE Bt FFH oz Sk o] wiol ted] £
do]o] M2 =451 TF-IDFS}F g2l dol % 719 ¥A S 18
7] g0 Bt H st We o] 7Hs5tHRole & Nadif, 2011). &
3], NPMI gto] -.1 < NPMI < .1%] gho] B2 oju|x oz =79l
wold 7HsAo] &t & 4= Qi

PMI(wl, w2
NPMI(wl,w2) = W

otgf A (Table 1) 54 Z=uQl& AS3sto2 Mot &=
AR 7709 A 8olE 7IRECE NPMI AlXRS: 285t 3 o
AlS Yerd Zolot, A7E AuEd CF AL HTF I AR
g2 32308 7P =2 S HolH, ol F ido] I A
£ 7S AR BHE, CH A T T 22 - 198 F
o7t A H o g HgF o8 54T 7Hs4d0] =e< Yrigth &
gF 2T FARALE 2 2242 F Tho|rt 4 29 ATAdES
7HE vehdicth. olek g, e oA AR L - 1328
AdH o R 2 AL HolH, o]F Bofl (Table 2)9} Zo] &&
o] TRE AT 4 it

Table 1. Example of NPMI-Based Co—-occurrence matrix for key terms
in sports science
x1 x2 x3 x4 x5 x6 x7

x1 0

x2 .099 0

x3 224 -.045 0

x4 0 099  -198 0

x5 -.154  .099 0 323 0

X6 055 -.078 224 154 154 0

x7 224 198 055 -.132 0 .099 0
x1: Muscular Strength, x2: Effect, x3: Anaerobic Exercise, x4:
Maximal Oxygen Uptake, x5: Cardiorespiratory Endurance, x6:
Graded Exercise Test, x7: Body Composition

Table 2. Extraction of stopword candidates based on NPMI

Word Pair -0.1 <NPMI<0.1 Stop-word

x4: Maximal Oxygen Uptake

x2: Effect 099 ©

x4: Maximal Oxygen Uptake 198 X

x3: Anaerobic Exercise )

x6: Graded Exercise Test 154 o

x4: Maximal Oxygen Uptake )

x7: Body Composition 1099 o

x6: Graded Exercise Test
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Table 3. Final stopword dictionary construction

Included NPMI Stopword Candidates

Reference Word

TF-IDF Threshold Stopword
Value  Comparision  Selection

x4: Maximal Oxygen Uptake, x2: Effect x2 (Effect) 25 <.32 (0]
x4: Maximal Oxygen Uptake, x3: Anaerobic Exercise x3 (Anaerobic Exercise) .85 > .32 X
x4: Maximal Oxygen Uptake, x2: Effect, x4 (Maximal Oxygen Uptake) .36 > .32 X
x6: Graded Exercise Test, x4: Maximal Oxygen Uptake

x6: Graded Exercise Test, x4: Maximal Oxygen Uptake, x6 (Graded Exercise Test) 29 <.32 O
x7: Body Composition, x6: Graded Exercise Test

x7: Body Composition, x6: Graded Exercise Test x7 (Body Composition) 21 <.32 O

O = Selected as stopword (TF-IDF <.32); X = Excluded (TF-IDF > .32).

Table 4. Summary of the automatic stopword generation process

Step Input Computation Output
@ Probabilities Tokenized docs Windowed co-occurrence, min_count/min_co, P(w), P(wl, w2)
Laplace at count level
(b) NPMI P(w), P(wl, w2) Normalize PMI into NPMI: PMI / -log(P(w1,w2)) Pair scores
(©) Candidates NPMI scores Filter [-0.1 <NPMI < 0.1] and collect unique terms Candidate set

(d Finalization Raw docs + candidates

TF-IDF(mean) — median cutoff(xmultiplier)

Final stopwords

297 801 A4 oA

A

(s}
A

PMI "4{o] ARl Thojof] T =gt g Fois) °
b2 olg A2kt NPMIE E-85to] ot 43 A3 £4<
g A o] 7Hte g, & AFolA= NPMIE 283t &
FHRE AHska, ol% TF-IDFE S¥A g 195t 54
E-801E A5t 294 TE T §AS AHEsioith

£ Aol A= NPMI gho] -.1 < NPMI < 191 ©o] % 9jn]
Hog =929l Aog F3hL, S TdolE 80 FHE A4
SHT.

T3 ElolE WolM AUAIA @2 HlEE 7HA= dolEo] ko]
22 A8 7732 E°17] 98l TF-IDF S99 71E< 275t
o ol oi7h AA glelgel A L4 Sl o) SAsHoF 24l 2
v e @z T 4 Stk 7l ZItei, S90S H-85t
< TF-IDF 71&3 37 A2 o 2ok G341l B8 o] 7Fsst
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StolE2 8ol2 AP BT, xdF kA F=H)S] TF-IDF
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(Appendix)°l AA=|oI}, o] T AFAS] AA 24 5
olgfsl7] $ist A8 w<es} ofAjoln AA| BEAoAE &
< uke} Zro] NPMI 714t oJu] Z4 ZE|P3 TF-IDF ZH<
P aF oz Agdeto] st =t AAH
9] A= (Table 5)} 2t}

3
=]

2 4o fo 4
o
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SEEE

AR 7] 2710 & HoEE #4517 g &9E ©ol-A T
A(Words-Articles Network TF-IDF)Z AA3}91aL, o] ¥ n}etu|
Q1 Alpha®t Beta #t& Z42F 44k .01, 493t .01, 7+4 012
A5t} 7+ EA7F 2420 2 Eo]| JFEUA ZF EFo] 4
9] F83t tol2 PP EE HASH

By ndgolx 5% EY 5 HA5l7] 9o E801E Aot
] &L AtEo| A Coherence score?l u_mass scoredba 1~5071
M F7H71H, B2 45 ERIg 23 Topic 4= K7F 971D o
71 H8 ARl e EATt.

o|% A9 E&o] 5 gQlst] o NPMIE 7o & E-80f
FHE AHF & TF-IDF S5 7€ 2 &85 Aot &
8003]9] EYndag-S AAS H u_mass &= $H5FI Tt

o] IHofA z+ AFuttt A= 97§9] Coherence scores %t
o HR7F 31 AR AYoAs SHHORE 2 52 W2 ol
2 (outlier)7} TAYst= FFE A ol wat 2 AtoA=
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Table 5. Research process

Step Category

Description

| Initial Parameter

* Unit of analysis: Words—Articles Network (based on TF-IDF)

Setting * Tuning of o and 3 parameters (min=.01, max=.1, interval=.01)

Establishment of

» Measurement of u_mass coherence without stopword insertion

2 Initial . : . . . s
n1];z;slell_ir1:;ass * Preliminary experiment conducted with topic numbers (K = 1-50) to determine the initial K value
3 Automatic Stopword * Application of NPMI + TF-IDF-based automatic stopword generation algorithm
Candidate Generation Total of 800 stopword candidates generated
Analysis of Automati . . .
4 n;t};spliv?)r d ; ﬁ?ézf . Regression analysis of the effect of the number of automatically generated stopwords on u_mass
Determination of « Sequential input of 1-800 automatically generated stopwords and collection of corresponding
5 Optimal Number u_mass values
of Stopwords « Identification of the number of stopwords yielding u_mass closest to 0
Stopword « Topic modeling performed using the optimal number of automatically generated stopwords
6 PWO * Topic modeling performed using manually generated stopwords based on prior research
Comparison .
(researcher judgment)
7 Statistical » Comparison of u_mass mean values between automatic and manual stopword generation methods
Comparison » Mann—Whitney U test conducted

Coherence score®] £3£9] A (robustness)¥ HgAFE 1
71 98l 2 A¥E 1~9709] Topic Coherence score?] % Etto]
AT} 2552 AAT FAE e (rimmed mean)e XF HIL
A= gt

A= A7

£ AFoA 9E BE 7Y A 9 242 Colab oA 3
=olow, A3t glole= CSV B4 0E AXE o] ExcelolA ¥4 A
g)of] &&=t

A7, NMPI®} TF-IDF 7|¥to & &5 JAw E8oj9 47} 9
27 A4 R4 (u_mass score)ol] U= FFS AE V] Y
3f OriginPro 2016 AZEfJo}§ &-&5to] T 3] AEA(Simple
Linear Regression)& 435It

7, B Aol A= NPMI®} TF-IDF 7]5to g 5 44d =
o] A|A 7IHa} AAY F/go] A" E8ol AA 714 7t 2o
£ vlwsl7] Yste] Topic K& 72 1A & ZF A4 4At&d
u_mass score® TEHFE Lot

AHA AR A(Shapiro-Wilk: A5 B4 71¥ W=.861, p=
156; A7AF Y F2 W=.968, p=.887, Kolmogorov-Smirnov
(Lilliefors BA): & 27 5 p=.200) F =4 ZFoA Fol+=
.05 71 B8 782 S5= A

J2u 2 ARs 248 322 $7F n=7E W§ Zol FA4 4
o] o] Agt&olH, Coherence score’} 4 - 3}t ZH=
bounded data®2A 23 H[HiA 2 Stg(outlier)ol W 54
= 27 g 2o & A= B A 7Pl &S| Hrks Hrp B
FFo|1 Bx wigtetA] o2 H|E4 Wl Mann—Whitney U 4
AE Aol B4 7o R Hgalqirt. ol X E M HSS AT &
AX FY,EL ¢=.052 AH3FA}.

o
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(Table 6, Fig. 1) NPMI2} TF-IDFE 7|&0 8 BRE E80j2
17858 3070744 AARE 74F u_mass scoredl U= FFS H
o3& RN Axfoltt.

AR G994 AA A F=23.49(p<.001)E BAZHOE &
oJm|sldon, AARAS R*=.45602 °F 45.6%2] A¥elS Bt
ol E80] #7F EY ndlo] U3 A H(u_mass)oll gt FIF

njAw, 229 4 HE F Ayl 7hrto]7t E80f A2 o5

=
a438E 5 Aee AnRit.

% u_mass score
Linear Fit of u_mass score|

u_mass score
o
?

T T T T T T T T T T T T T T T T T
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
stopwords(n)

Fig. 1. Coherence score
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Table 6. Impact of the number of stopwords on u_mass score

Variable B SE  p t F R
Constant -15.169 .234

Stopwords .064  .013 675 4.847***
sksksk <001

-64.744

23.490%** 456

A -15.1692 E807F E2A5H4] & W] 712 u_mass
2 Yehliy, 34 B=.064= E-8o7F 1704 712 wjuict
u_mass score’} W& O 2 0644 F713-S E‘ﬂ—*—q. ol=E8
o7} AIAH et BB ag dol9] o] FolE, EY 7t &
E7h JA; A= o] mEo] Qfud Jybdo] wobdlE UEhdth
& 2= 013019, (I3 FHAN)= 6758, B8] 7t
u_mass score®|| B2 Z37t *J’EHZ* o= E"ﬁ:r % 5= At} &80
9] -BAIEEL 4.8472 o] B3 ml> 893 522(p<.001)°] T}
Ao 8o N5 A= A
£ AFoMes EY BP9 guiEF J/dol tigt E8019
FE EA0Y, HAEE AFV|e HHE EYEEY iy
79 %‘Qcﬂ MEE AEste Zlo] FEH0|qI. o8 ¢, &8
019] =& 1705H 8007174 AAA 22 =271 u_mass score
9 %Q—E s om, Ayt (Table 7, Fig. 2)9F ZTh u_mass
score= EY 7t0] Quid AgE F4ot= AEEA] 09 77
5 o U2 EF9] dBgS ueith

2 A3} B-80] 20071E AAHE W u_mass score”} —11.442
2 00 7P 2T 2= UEHl o= & A7F ZARE Y Y
oA HH 9] B8] & e 4 QU

Table 7. Changes in u_mass score based on the number of stopwords

Stopwords(n) u_mass score
30 -15.743
50 -16.762
150 -11.762
200 -11.442
250 -13.844
300 -14.145
350 -15.691
400 -16.283
450 -15.251
500 -15.239
550 -16.578
600 -17.056
650 -18.243
700 -20.685
750 -21.849
800 -22.360

kjss.sports.re.kr

(score)

u_mass

T T T T T T T T T 1
0 100 200 300 400 500 600 700 800 900
Stopwords(n)

Fig. 2. Changes in u_mass score based on the number of stopwords

280] B3 ¥ 71 W4 u_mass score o] B4 Az}

1

E-8o] 5 Ao thE HF u_mass score A0|5 H| W5} Y3
A, NPMI®t TE-IDFE 123t A5 B4 E8012] 4% (Table
7yolA AAE HHZEQ 20070 240 E-&stglon, A, 51
9] A= 7t 9ol S84 wtol 9fsf A4 -A A" E8of

64708 B4 & O}Oﬂq ojuf M2 HPHsRE W wet &
£ u_mass scores EEH5HLE 53 Mann-Whitney U-testS
A-83 A= ofefi e} 2t

(Table 8)2 25 W 7t u_mass score®|d, (Table 9= F 1
W 2t Bt Ate] A4 Adfolnr. £44% NPMI®F TF-IDFE 1L
Hot A= E-80] HAE u_mass score= —11.441+1.6320]31
on, AFAE 7t Folo ot AAH u_mass scores= —16.001
£.9952 Ueht & B 7F f9ugh Zol7t 9l AR ERIESGL
th(Z=-3.003, p=.003).

W 7 2ol ARE AmEE NPMISH TF-IDFE 1&gt &}

Table 8. Descriptive statistics by classification method

Classification Method

u_mass score
-11.23
-10.16
-11.46
NPMI Classification -10.01
-10.17
-12.57
-14.5
-14.37
-15.51
-15.64
Subjective Classification -16.95
-16.1
-16.03
-17.41
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Table 9. Comparison of topic coherence (u_mass) between NPMI and
subjective stopword classification method

U_mass score

(M+SD) z P
NPMI
Classification (n=7) HAazeL63 3.003 003%*
Subjective h .
Classification (n=7) 10.001£0.995
p<.01**

5 E80] AA7|HIA A9 Egol2 AFH 20071 H-&3t u_
mass score®] B0 AFAEC] A 0 A A E-8olof v
2.E u_mass score’} 09 717k 23S YERACH

= o

AT AR BHNA A% 55 wolsk wetof ket 4lo]
E2 A o] B 4 U] el A Fpho] ©)E% B8] A
Ao Aste] A=l A4 FF5HS A5t 4 ek 249
2o glAw 2lo] A7 3 Wste §oi ALgo| Bl ATkl
D0 542 AU o] Lurael BEo] Hel PAoRL £
oozt k3 1go] St BA) Q4)H FEHE. ol o]

Eoll ASoHAT &5 A8 AT
Oﬂ 85 5 YeE A 7hsT As 5ol HHs 7o auts
ASok=d 548 £ U

olof] B AL 13Z o NPMIE &8st} Ego] TH A%
5 2X}2 TF-IDF 9 7|£22 £8018 X}E£ Y233t A+ 7
ARl 8o A4 BHE Ao, olg 5 EY ndF
Pt off F2 ] uEH dHYS 7}11 EYS 25T 4
L S A S o]E NPMIE E-83l0] E801E AAT E
Daga A7 FRHOoZ YT 8ol AAST EY 1Y
A3 v|ste] T o] Aitol o]zt Q=S Eelstaitt.
WA], NPMIE &-85t0] E8015 AYdohs W] BEY ndg 4=
Fol FHHRN FFS A=A IRl A} ol & Y HAEE AF
1S FIYER ZHe 4437]9] =RoA FEH HAE Hlo]E A
TF-IDF gto] W2 A2 307H«1 E8ol5 F5&5190m, B89
1-30705 «AH 02 JE5t3S W u_mass scored] oJH FFS
"X =2E A5ttt

AT AT} R*=.456(p<.001)2 NPMI} TF- IDFE &4 B&olS
AAsH Bgo] ou 24 U4 A< u_mass score?] FAS
FIA7Ied ZHAQ TS uAE A= YEhgTh ol& AHE
g E8o] YAEE H 85192 H B0Vl old4E EY 1d
Y5 A EQ] EXE(Perplexity)7t RollS B gt APA2] At
o} GA5cHLee & In, 2017).

ojgto] £ A9 ZA3E Nam and Cheon(2019)0] AQkst
PWMH-Gibbs @1 8|&3 e 3ol 9t s AFolAL LDA E
o B o] IAEE R4 FE FSFEFPMDE 7=
g8oto] E8olE AAsHL 5 FIAII= 7S Actetile
), & AFNAME FLe Wetox] A7) FHFS viAe A
5301 AA7t Ex mEo] A5-& AT 5 93-S ERIskoTt

-1>
» Mo % r.?L

o, 1B %O
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A9 39 —Ev——i Ae 58019 /7t soldaE e
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[Appendix] Example of an Automatic Stopword Generation Process

@® Term & Co-occurrence Probability Calculation

(build_probs)

import numpy as np

from collections import Counter, defaultdict

def build_probs(tokenized_docs, window_size=5, min_
count=2, min_co=2):

term_counts = Counter(t for doc in tokenized_docs
for t in doc)

term_counts = Counter({t:c for t,c in term_counts.
items() if ¢ )= min_count})

vocab = set(term_counts)

total_terms = sum(term_counts.values())

term_prob = {t: c/total_terms for t,c in term_counts.
items(}

co_counts = defaultdict(int)
for doc in tokenized_docs:
doc = [t for t in doc if t in vocab]
n = len(doc)
for i in range(n):
for j in range(i+1, min(n, i+1+window_size)):
a,b = sorted((doclil, docljl))
if al=b: co_countsl(a,b)] += 1

co_counts = {k:v for k,v in co_counts.items() if v )=
min_co}

total_co = sum(co_counts.values())

co_prob = {k: v/total_co for k,v in co_counts.items(}
if total_co)0 else {}

return term_prob, co_prob, vocab

[ Description:

tokenized_docs: list of tokenized documents

window_size: maximum span for co-occurrence

window

min_count: minimum term frequency threshold

(terms below this are excluded)

min_co: minimum co-occurrence frequency
threshold (pairs below this are excluded)
O Operation Flow:

» Compute global term frequency and remove low-
frequency terms based on min_count

* Build vocabulary from filtered terms and compute

term probability P(w)
+ Count co-occurring term pairs within window_size,
then exclude pairs below min_co

+ Normalize co-occurrence frequencies to compute

P(wl, w2)

® Normalized PMI Calculation (calculate_npmji)

def calculate_npmi(w1, w2, term_prob, co_prob,
alpha=0.0, eps=1le-12):
a,b = sorted((w1,w2))
pwl = max(term_prob.get(wl, 0.0), eps)
pw2 = max(term_prob.get(w2, 0.0), eps)
pl2 = co_prob.get((a,b), 0.0)
if alpha)0.0:
pl2 = (p12 + alpha) / (1.0 + alpha) # Simple
Laplace Smoothing
if p12 <= 0.0:
return 0.0
pmi = np.log(p12 / (pw1*pw2))
return pmi / -np.log(p12)

[0 Description:
* wl, w2: target word pair for NPMI computation
* term_prob, co_prob: dictionaries for term and co-
occurrence probabilities
+ alpha: Laplace smoothing factor (0.0 = no
smoothing)
* eps: small constant to avoid division by zero
O Operation Flow:
* Retrieve probabilities P(w1), P(w2), P(w1,w2)
* Apply Laplace smoothing to P(w1,w2) if alpha ) 0
« If co-occurrence probability is zero — return 0
» Compute PMI(w1,w2) = log( P(w1,w2) / (P(w1)P(w2))
)
+ Normalize PMI into NPMI: PMI / -log(P(w1,w?2))

© Step 1: Stopword Candidate Extraction (generate_
stopwords_candidates)

def generate_stopwords_candidates(tokenized_docs,
npmi_low=-0.1, npmi_high=0.1,

window_size=5, min_count=2, min_co=2, alpha=0.0):

Korean Journal of Sport Science 2025, 36(4), 557-567

https://doi.org/10.24985/kjss.2025.36.4.557




The effects of fencing specific training

567

term_prob, co_prob, _ = build_probs(tokenized_docs,
window_size, min_count, min_co)

cand = set()

for (a,b) in co_prob:

v = calculate_npmi(a,b,term_prob,co_
prob,alpha=alpha)

if npmi_low <= v (= npmi_high:
cand.add(a); cand.add(b)

return sorted(cand)

[0 Description:
 npmi_low, npmi_high: lower/upper thresholds for
NPMI filtering
» window_size, min_count, min_co, alpha:
parameters passed to build_probs and calculate_
npmi
O Operation Flow:
* Call build_probs to obtain term/co-occurrence
probabilities
* Compute NPMI for each co-occurring term pair
* Select both terms as stopword candidates if npmi_
low < NPMI < npmi_high
* Interpretation: NPMI ~ 0 implies weak contextual

association — low semantic value

@ Step 2: Final Stopword Selection (finalize_stopwords)

def finalize_stopwords(raw_docs, npmi_candidates,
median_multiplier=1.0,
min_df=2, max_df=0.9, sublinear_

tf=True):

if not raw_docs or not npmi_candidates: return [I

vec = TfidfVectorizer(lowercase=True, min_df=min_
df, max_df=max_df,

sublinear_tf=sublinear_tf)

X = vec.fit_transform(raw_docs)

feats = vec.get_feature_names_out()

mean_scores = np.asarray(X.mean(axis=0)).ravel()

tfidf = dict(zip(feats, mean_scores))

cand = [w.lower() for w in npmi_candidates]
cand_scores = {w: tfidf.get(w, 0.0) for w in cand}

if not cand_scores: return [

scores = list(cand_scores.values()

med = float(np.median(scores))

thr = med * float(median_multiplier)
return sorted([w for w,s in cand_scores.items() if s (=

thr])

[0 Description:
« raw_docs: original (non-tokenized) document list
for TF-IDF computation

npmi_candidates: initial stopword candidates from
Step 1

median_multiplier: scale factor for TF-IDF median
threshold

min_df, max_df, sublinear_tf: TF-IDF vectorizer

hyperparameters
O Operation Flow (NPMI + TF-IDF fusion):

» Compute TF-IDF across entire document set

* Extract average TF-IDF scores for only NPMI-based
candidates

* Compute median TF-IDF and apply multiplier to set
final cutoff

* Select words whose average TF-IDF < threshold as
final stopwords

* Ensures both low contextual value (NPMI) and low

discriminative power (TF-IDF) are satisfied
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