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PURPOSE This study sought to classify the playing styles of KPGA players based on
performance-related technical factors and develop a supervised learning model that
automatically predicts and classifies these styles. METHODS Performance data were
gathered from KPGA Korean Tour players between 2015 and 2024, focusing on six
key technical indicators. Distinct playing styles were identified by standardizing the
variables using z-scores and then clustering them using the K-means algorithm. Based
on the clustering results, predictive classification models were built by applying five
supervised learning algorithms—decision tree, random forest, K-nearest neighbors
(KNN), support vector machine (SVM), and multinomial logistic regression. Model
performance was then evaluated using accuracy, precision, recall, and F1-score, with
generalizability assessed via five-fold cross-validation. RESULTS Four playing style
clusters were obtained, each labeled according to players’ technical characteristics:
“overall weakness type,”“distance-deficient but technically proficient type,“accuracy-
oriented type,” and “power and risk-management type.” The multinomial logistic
regression model showed the highest predictive performance, followed by SVM, KNN,
random forest, and decision tree. CONCLUSIONS This study confirmed that KPGA
players can be characterized into four distinct playing styles based on their technical
performance data and that these styles can be effectively classified and predicted
by supervised learning models. These findings highlight the models’ practical
applicability in personalizing training strategies, developing course-specific game
plans, and contributing to the advancement of Al-based sports analytics systems.
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Table 1. Collected data

Year Number of player

1 2015 105
2 2016 98

3 2017 110
4 2018 106
5 2019 104
6 2020 123
7 2021 118
8 2022 116
9 2023 104
10 2024 112

Total 1,096
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Table 2. Variables

Variables Label Contents
| Driving Distance(Yds) DD The mean driving distan ce (yd) meas ured o n two comm ittee-designated holes
among the 18 holes
5 Fairway Accuracy(%) FA Falrwa.y accuracy was defined as the percentage of tee shots that landed in the fairway,
excluding par-3 holes
3 Green in Regulation(%) GIR The percentage of holes in which the ball was on the green in regulation
4 Recovery Percentage(%) RP The percentage of holes in which a par or better score was recorded when the ball was

5 Sand Saves Percentage(%) SSp

6  Putting Average(stroke) PA

not on the green in regulation

The percentage of attempts that resulted in a score in regulation when the ball was in a
greenside bunker

The average number of putts on holes where the ball was on the green in regulation

7] A5k #& BAsth ol 4 o] wE WCSS(Within-
Cluster Sum of Squares) Z+9] #4 oel-& E A5k WCSSS &+
2 Zo| 2743 Walsl= X]X“?_ AL IZRE(Elbow Point)S 2F
0]- _‘,]X']_q 1"‘(1{) /\E 73%‘] T;]— 5-7]-2—] o7 :,L;g _/'r: ﬁ;ﬂsq 7“
AL FH] Yol AT ‘:‘/S‘](Sllhouette Analysis)Zt 74 B4
(Gap Statistic)E &3ttt o]F 24 K-S vigog K-3

& FREH(K-Means clustering analy51s)—°- AA|elo] ApES

7€ 8%l EAS Wrge A7) AHY f32E ER5HGH. ol
FALE 715EY] 7% 9 fdog BRE 49 E4< 4]
el ZF ol &3 P59 7 89 EAS HIFOE g #
ofstelon, o 27 % = 79 109 o]4Jo|HA KPGA == 2}
OJMAE BR/SHIL Q= ¥PAF 3919 AEE Bolf o]FolRltt. ES
7 F-o] &3 AE9 7l 8219 AolE Lotk 7] I8l U dHl
A AR (one-way ANOVA)S HAISHAT, 72 4 H 714 8
Q18] BARCE [t Aol & YERdl A2 ScheffeE AHE-5o] AL
FEAZ AN v g AHE BF RS 75517 {5
oA 7H] 7l& 8RS HEHS, EFE Ul 7H 23 SEHSE
A75kelet. oldf H-8H waled 7 F oAl 7HA R, 9AtE
AUF(Decision Tree), #H ZHAE(Random Forest), K-F+

o] %(K-Nearest Neighbors, KNN), A ZE €] #Al(Support
Vector Machine, SVM), t}d} 22X A8 3]HEA (Multinomial
Logistic Regression)< -85} t}.

T5E Z A5 29 45 Brhe AA dolelg TR wid
3t &, 80%E g5 HolH, 20%E HIAE HolH 2 AAst H, &
Sz (Accuracy), U&= (Precision), A&@-&([Recall), F1-H(F1-
Score)& AtEoto] B7lolltt. T, 2Eo| gutst 452 SHot
7] 93l k-fold @A Z(k-fold cross validation)& 103](5-fold)
YHE goto] o d BEHR} gHE 4RSSl mRAet e 2 oAl
7] & 29 719 45 H|Wol] flof ERIEI-ANEL T
(Kolmogorov-Smirnov test)< °]&sto] F514 A= A 4
I A sk 210 & gRlste](p).05), B A4 A7 WU
Al LA R E-AHE A (one-way ANOVAYE AAJsISIT olnf 2l
ZF A% 450l BAZFCE [t AfolE UEE 3% Scheffes
Argote] AFERAZ AASH T BE SAE §94 A5 |2
% o= .052 Aok
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ARG UREE 7| AstE(Machine Learning)ollAl A =8h%
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o, 71 ofg] WHE wE(internal node)i 719 4 Y} ==
= 54 dAZe] et Hol"HE & o149 7 (branch)Z £85
1, HFHOE ¢ ol £o] ‘éﬁ AU AHH 27 =9
A ZZiE(leaf node)7t Fo] FF A& A= Yehdtt. ol Ht
FOoR QAEAUET Y™ A& siAsts dAE AAA "ok
(Berry & Linoff, 1997). QXA UF= ZLAQ 4] 7155t
1 B[R Aol b= A AYARE, Aol YA 4]
Su AAH APA wheto] vgsttt= AE AdthBishop
& Nasrabadi, 2006). & Ao A+&= Scikit-Learn 2to]HE.&&] <]
DecisionTreeClassifier 35 28313t

2) @Y EHAE(Random Forest)

dy ZHAE dgor 229 oy o 2 YU =
€2 o|E HoR, A& 45 =ole YL 7IHS It
H ZHAELE flojE M(Data se) 2LE2FE F2 HlolE &
Z5to] o9l 24 UF(Decision tree)E F=3=4|, & 2
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2o wtet JAHAF VRS £7F WoldLg HAgE HAT & QL
on, 7 QAEZUEE SHEAE o AA dlolE AolA F2
AR B 59 HolHE A6 Hol FE(noise)olH ©]
ZA(outlier) 2H¥ WA AF-FHKang, 2023). Wb F-&
gt HlolE 57 ¥ 39 o Jdy AHEE L Slth(Pathak
& Wadhwa, 2016). £ Ao A& Scikit-Learn 2Fo]E 22| 9]
RandomForestClassifier 45 &-83519 09, 24 YR £&5
100712 A7gste] sh&ooiTt.

3) K-2]Z4 o] 2(K-Nearest Neighbors, KNN)

K-F24 o2 &7 9 37 ¢1829 3 T/ N9 &
oA 717k Aol $Agt Hlolelg 54 MFE ERote A
5k 2do]|ti(Alonso & Babac, 2022). ThE R E5hs HEo
H|5l YEf7b d<eoto] o] 41 &3 dA oA w2 $=8o] 7}
22 9 3|9 mdlg wo] AFRE 1 Ith(Horvat, Havas et
al., 2020). I8, Aot k9 ol wet EFHE 159 &
4 E E4o] ZetA7] wiZo] vlojg e &4 & HAgt k
9] &5 A"t Ao Fasitt. 2 A4+ Scikit-Learn 2}
o]H&2]9] KNeighbors Classifier &+& &&35t90H, <
A o]z f(k)= A AolAl AAISE BT overfitting) 2t 3}
AT (underfitting)9] H+3S 1T 7]Eg 52 AAstATh
(Pedregosa et al., 2011; Tan et al., 2019).

T

=
<]

4) A& Hg HAl(Support Vector Machine, SVM)

AZE WE A 2HHES o]&oto] AN 37hS
N-1 Aoz Yl 25 d18|&o|ti(Kim, Lee et al., 2024).
7+ HR19] glolg & Sl A 7t AA o 77k glolE 7he] A7t &
7} He FEA(GEEH)S FAske] A2 o] Uerg uf A
9] o] Zof| &oh=A] BFoh= ot Horvat & Jod, 2020). Al
RE Wlg HAl2 Agolu A #A BF H& 7ot 24
2ol Y3lo] Wol £ kg HEE a2l 7[HoltHKim & Lee,
2023). & AtolAlE Scikit-Learn 2to]Hj2]9] SVC 5 &8
stgloH, ) vhE 4= 10002 A5 tHKang, 2023).

5) ogt X A 3984 (Multinomial Logistic Regression)

g3 ZXAE IARALZ Al A old HFE SEHSE F
L= 2307 7]F HF(reference group)?t v sto] Z} HFo
4% 22 27(log-odds)E FHot= FAF 4 7ot (Lee,
2020). 2 Aol dES 7HE 5ol 99 2 s 42 A
Aota, AFEQ 7I& 8% Fo] OE 47| AFIE EF7]
ol o+ 2 AE AL HAISHATE. 3L, Scikit-Learn
2to]B2]2] 9] LogisticRegression &4E &-85t9 2™, multi_
class=multinomial®} solver=lbfgs |42 2-85}0] T} A AFE
3|9 4L Fokdt

A
o)
(@)
=
R
i)
rO
Sl
2
r'>~
i
il
1o
N

< 8% 71e84 24

KPGA TR0 A4E9] 7]& 921 Yot 7| o)l 7|&5A4 &
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B AqollA ARE9] A7) AetdS EF5] A6 AHH V& 8
Ql 7+ APA d tEEAAS AEIY] Yol Hojao] AREAS
AAgE A3, A5 Aol A AIAFE 7]E(Dormann et al., 2013)
e} ETAAY BAL g AoR wuslgt ol wat 7+ 74
2912 EHAS AR AHiolA F-sE B4 85170 Hgt
Aoz wtstti(Table 4).

)

24 4 24 A% 54 71

Ao 4 5 245 fsf RS- 7IHES dAIske] WCSS gk
o] HskFS SASHIT 1 23, 239 7t 471714 WESS Fhol
F43| Aastion, 29| 7} 571 oV dREE A4 FHo| gty
e A 2ol g A ARG ZJAER At tH(Table 5,
Fig. 1). B3, 34 & 249 A8 s A A7 A2
A AL Y AEskch AR 24 A, k=471A] WCSS kol
28] A7 o] SR E = i Fol A evteiAle ¥
B 20i(Table 6, Fig. 2), 7 SAIIAE k=304 7HE 2 #= &2
%tH(Table 7, Fig. 3). HFH o2 £ 1+ Bel® oj4 7642 59
Zom nT A} k=47} 7P P A o)L s ket I AR R
=], HFH e 49 AL A 24 += AAsl

L=
L
=]

Table 3. Descriptive statistics of skill factors

Variables M+SD
1 Driving Distance(Yds) 283.64349.959
2 Fairway Accuracy(%) 63.712+6.965
3 Green in Regulation(%) 69.282+4.038
4 Recovery Percentage(%) 52.769+5.883
5 Sand Saves Percentage(%) 56.514+11.274
6 Putting Average(stroke) 1.811+.041
Table 4. Correlation analysis among skill factors
DD FA GIR RP SP PA
DD 1  -.600%* .166%¥*  -020  .284%* - 1]12%*
FA 1 355%% 117 - 137%F 024
GIR 1 A54%%k 0 204%% _142%%*
RP 1 365%*  -334%*
SSP 1 -251%*
PA 1
**p<.01

DD: Driving Distance, FA: Fairway Accuracy, GIR: Green
In Regulation, RP: Recovery Percentage, SSP: Sand Saves
Percentage, PA: Putting Average
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Table 5. WCSS by number of clusters (Elbow Method)

Table 7. Gap Statistic by number of clusters (Gap Statistic)

K(Number of clusters) WCSS Reduction K(Number of clusters) Gap Statistic s(k)
2 5498.604 - 2 1.6762 .0038
3 4801.022 697.582 3 1.7170 .0103
4 3337.467 1463.555 4 1.6955 0182
5 3032.817 304.65 5 1.7008 .0090
6 2783.397 249.42 6 1.6994 .0108
7 2600.733 182.664 7 1.6870 .0139
8 2482.073 118.66 8 1.6936 .0139
173
5500
2 172 1
‘é 5000 i
é 4500 1 . L
g 4000 § 1.70
5 35001 1.69
g 3000 Lea
2500 1
2 3 3 5 6 7 8 LerT= : : : . T :

Number of cluster(k)

Fig. 1. WCSS by number of clusters (Elbow Method)

Table 6. Silhouette Score by number of clusters (Silhoette Analysis)

K(Number of clusters)  Silhiette Score Reduction
2 5272.051 -
3 4428.162 843.892
4 4062.601 365.561
5 3741.332 321.275
6 3536.492 204.848
7 3353.481 183.013
8 3180.607 172.889
5000
g 4500
§ 4000
3500 +
2 3 3 5 6 7 8

Number of Clusters (k)

Fig. 2. Silhouette Score by number of clusters (Silhoette Analysis)

Korean Journal of Sport Science 2025, 36(4), 592-604

Number of Clusters (k)

Fig. 3. Gap Statistic by number of clusters (Gap Statistic)

18e B A2 4709) 2o wet K-
B PREAG AAste], 7 2ol 47 44 50} 71 2 ot
SAg datet 2] S A8 Tl

i)
>,
el
mﬁ

249 71 89 o] 14

1) Eefolu ¥ A

7 ) &3 455 Sefoln A Jolg FFT 2
24 9 Rol7} 9 A0 vekeh(=357.405, pC00D), ATHe
(Table 9y} ek,

2) Hojgo] ? &

ZF o &5 A4E9] #Hojgo] HEES Xolg HET ATt
3 & Xpo|7} Q= A0 7 YERGFTHF=403.933, p{.001). (Table
10)3 A,

&3t Bl O7 A58 Aol Aot A+ ¥
z}o|7} 9l A o 2 VG THE=216.294, p<.001). <Table 113 2t

4) A&
ZF FAol &% A9 R Aol A 29 &

o)
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Table 8. Skill factor characteristics and cluster labeling

Cluster Label n DD(Yard) FA(%) GIR(%) RP(%) SSP(%) PA(Stroke)

Cl1 Overall 156 280.890+7.896 59.23445.320 63.563+3.792 47.583+5.837 47.098+10.548 1.833+.044
Low-Performance Type

cp  Distance-Limitedbut o0 o) 5006751 67.22044.608 7147443034 57.577:4.849 63.927:8330 1.787+.033
Skill-Dominant Type

C3  Accuracy-Specialist Type 319 276.600+7.292 68.940+4.393  69.753+2.971 51.0324+4.538 49.341+9.317  1.829+.036

Long-Hitter with

c4 Risk-Management Type

325 294.039+6.753 57.528+5.088 69.568+3.236 52.584+4.688 61.321+7.818  1.806+.036

DD: Driving Distance, FA: Fairway Accuracy, GIR: Green In Regulation, RP: Recovery Percentage, SSP: Sand Saves Percentage,
PA: Putting Average

¥ 2pol7} Q= A0 2 UERGITHF=168.914, p<.001). (Table 12) Table 10. Fairway accuracy (%)
o 2. Cluster M SE F(p) post-hoc (Schefte)
C1 59.234 5.320
5) {7 AlojB& -
7 270 &8 As0] W Alo] B0 Fo|= 5 A o C2 67.229 4.608 403,933+ C3 > C2¥**%* >
T = S C3 68940  4.393 ' Cl** > C4*
Z & zpol7} = Ao 7 YERGTH(F=230.860, p<.001). {Table
1353} 20 C4 57.528 5.088
= *p<.05, ¥*¥p<.01, ***p<.001
6) HE 5 : ion (9
2} A0 &3 HASO] HE 20| Hol2 A=at Azt 2§ Table 11. Green in regulation (%)
o|7} A= A2 YERHTHF=87.368, p<.001). {Table 14)%} Zt}. Cluster M SE F(p) post-hoc (Scheffe)
C1 63.563 3.792
Cl1—C2—C3—C4 C2 71.474 3.034 R
216.294%%** 2=-c
Driving Distance C3 69.753 2.971 C4 > Cl#***
C4 69.568 3.236
**%p<,001
Putting Fairway
Average Accuracy Table 12. Recovery percentage (%)
Cluster M SE F(p) post-hoc (Scheffe)
C1 47.583 5.837
C2 57.577 4.849 > (4 >
Sand Saves Green in 168.914%** CZ***C4 .
Percentage Regulation C3 51.032 4.538 & >Cl
C4 52.584 4.688
**%p<,001

Recovery Percentage

Fig. 4. Characteristics by cluster Table 13. Sand saves percentage (%)

Cluster M SE F(p) post-hoc (Scheftfe)

Table 9. Driving distance (Yds) Cl 47.098 10.548
Cluster M SE F(p)  post-hoc (Scheffe) C2 63927 8339 230.860%*s  C2>CI¥**>

Cl  280.890  7.896 C3 49341 9317 ' C4x > C3xxx

C2 281269  6.751 C4 > C*%% = Cc4 61321  7.818

357.405%

C3  276.600  7.292 C1 > C3#x* *1<.05, ***p<.001

C4  294.039  6.753
#axp< 001
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Table 14. Putting average (stroke)

Cluster M SE F(p) post-hoc (Schefte)
Cl1 1.833 .044
C2 1.787 .033 C2 < C4x** <
87.368***
C3 1.829 .036 C3*** =Cl
Cc4 1.806 .036
**%p<.001

Decision Tree A X85 Bd 9] o= AH% F7}

K-B¢ &3 $3E &85l A459 47] 2689 1§02 &
H Z3E 85 HlolE|R ARBote] & H A =5s5 Z(Decision
Tree)] ol& 52 B7Ist 23, F&: 818, FUk .813+.033,
AEE .802+.065, F1-H4 .807+.045% bt 3 K-fold
DRSS APt 2t wdl s Y7 AR g AEs A 4
I 792+.022, YT 784+.028, AEE .778+.023, F1-H%
779%.026% et A& 215k tH(Table 15).

Random Forest A L8t5 2dl 9] o= A5 7}

S g8ote] A5 A7) ARY 1F08 R
5 ﬂol‘ﬂi ARESto] & H A &sks 2d(Random
o grist A3, L 900, YT .908
+.038, AI1FE 892+ 053 F1-84 .899+.022& Yyttt E3H
K-fold M}%l S AYPsto] 7k wdll F5 Hrh A X e AES
A3}, AT 904+ ozz, AYUE 909+.023, A& .890+.024,
F1-d2 .897+.024 LERY AL 2Hl5tAtHTable 16).

K- -+
= 3’—}%—
Forest)9] o= 51

_1°i' m>4

i OE

KNN A=shg 299 o2 4% 57}

KNN Ashs BHlo] o5 Jo B7ier 23 Foe 945, 49
% .954+.038, ABE .936+.048, F1-H4 944+.0152 rebet

Table 15. Performance evaluation metrics of the decision tree model

Cluster ~ Accuracy  Precision Recall F1-Score
Cl - 167 .697 730
C2 - .825 .810 817
C3 - .805 .873 .838
Cc4 - .857 .828 .842

Average 818 .813+£.033  .802+.065 .807+.045

K-fold  .792+.022 .784+.028 .778+.023 .779+.026

Table 16. Performance evaluation metrics of the random forest model

Cluster ~ Accuracy  Precision Recall F1-Score
Cl - 966 .848 903
C2 - .891 .845 .867
C3 - .893 .945 918
C4 - .885 931 908

Average .900 .908+.038  .892+.053  .899+.022

K-fold  .904+.022 .909+.023 .890+.024 .897+.024

7—‘_1—]- A= .894+.020, FBE .898+.020, AF& .879

o B8 K-fold BA15E ABete] 2 Bd A% 7t AR 2
AFE3H 1T
+.023, F1-3d<= .886+.0212 YEPd A& &+ Lﬁ}ﬁ‘:}(Table 17).

SVM A =gk 2dlo] o H5-g grist 23, HEw 977, 4
= .98+.019, &L .972+.028, F1-A< .976+.0072 Vrebgth.
T3t K-fold AAASE APsto] Z+ E%‘ s Bt AR FE
A&t A3}, A 959+.015, UL .959+.015, AEE 954
+.018, F1-84 .956+.0162 Yt AL 154 tHTable 18).

03 A AE AR A wokg B d & A5 F7t

0 ALY JARH Arshs 229 A% dss BUR 2,
e 982, HUE .984+.008, &EE .981+.01, F1-F4= .982
+.003% YEhgTh ‘_I-_’EP K-fold nAAFE A3sto] 2+ Bdl 4
5 B7F A HO S AHESH A3 FE e 982+.011, FEE 984
+.010, AE& .981i.012, F1-34= .982+.0112 Yehd AL &
QI5FATHTable 19).
Table 17. Performance evaluation metrics of the KNN model
Cluster Accuracy  Precision Recall F1-Score
Cl1 - 1.000 871 931
C2 - 966 933 949
C3 - 940 984 962
C4 - 912 .954 932
Average .945 .954+.038 .936+.048 .944+.015
K-fold .894+.020 .898+.020 .879+.023 .886+.021
Table 18. Performance evaluation metrics of the SYM model
Cluster ~ Accuracy Precision Recall F1-Score
Cl1 - 1.000 935 967
C2 - 983 .983 933
C3 - 955 1 977
C4 - 984 969 977
Average 977 98+.019  .972+.028 .976+.007
K-fold 959+.015  .959+.015 .954+.018 .956+.016

Table 19. Performance evaluation metrics of the logistic regression

model
Cluster ~ Accuracy  Precision Recall F1-Score
Cl - 975 .983 979
C2 - 981 991 .986
C3 - .984 .982 983
C4 - 994 967 980
Average  982+.011  984+.008  .981+.01  .982+.003
K-fold 982+.011 .984+.010 .981+.012 .982+.011
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Table 20. Analysis of differences in predictive performance among supervised learning models

SS Between df MS F(p) post-hoc (Schefte)
Accuracy 159 4 .040 929.094#%** a<b*FF=c<dFFE<erF*
Precision 157 4 .039 971.922%%** a<b¥**=c<d¥**<e¥¥*
Recall 159 4 .040 929.094*** a<b¥**=c<d***<e¥¥*
Fl-score .16l 4 .0404 913.288%#%*%* a<b***=c<dtFr<er**

wxxp< 001

a= Decision Tree, b=Random Forest, c= K-Nearest Neighbors, d= Support Vector Machine, e= Multinomial Logistic Regression
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