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서 론

골프는 선수의 신체적·심리적 상태, 경기 기술과 같은 개인적 특성
과 경기장의 형태 및 상태 혹은 날씨와 같은 외적인 요인이 복합적으
로 작용하는 종목이다(Kim, 2010). 골프 경기력을 구성하는 요인은 
현장뿐만 아니라 학계에서도 지속적으로 논의되고 있으며, 일반적으
로 기술적 능력(정확성 및 일관성), 창의적 의사결정 능력(전략적 사
고와 상황 판단), 외적 능력(환경과 외부 요인), 내적 능력(심리적 안

정과 집중력 등), 신체 물리적 능력(체력과 신체조건)이 있다(Smith, 
2010). 이 중 경기력에 직접적인 영향을 미치는 요인은 골프 경기를 
구성하는 기술 요인이다(Son & Kim, 2008).

골프의 기술 요인에는 드라이브 샷, 아이언 샷, 어프로치 샷, 벙커 
샷, 퍼팅 등이 있으며, 이 외에도 대회 중 주어지는 다양한 상황에 맞
춰 여러 가지 기술을 구사하여 목표 지점으로 볼을 정확히 보내기 위
해 플레이한다. 이러한 선수들이 대회에 참가하여 발생하는 기술 요
인의 결과를 각종 프로골프협회에서 기록하여 제공하고 있으며, 이는 
선수의 내적·외적 변인을 종합적으로 포함하고 있어 그 영향력이 그
대로 반영된 지표라고 할 수 있다(Min, 2011; Quinn, 2006). 기술 
요인에 대한 통계적 자료는 선수들의 경기력 수준을 객관적으로 파악
하고 평가할 수 있기 때문에 경기력 평가 및 향상을 위한 지표로서 사
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PURPOSE This study sought to classify the playing styles of KPGA players based on 
performance-related technical factors and develop a supervised learning model that 
automatically predicts and classifies these styles. METHODS Performance data were 
gathered from KPGA Korean Tour players between 2015 and 2024, focusing on six 
key technical indicators. Distinct playing styles were identified by standardizing the 
variables using z-scores and then clustering them using the K-means algorithm. Based 
on the clustering results, predictive classification models were built by applying five 
supervised learning algorithms—decision tree, random forest, K-nearest neighbors 
(KNN), support vector machine (SVM), and multinomial logistic regression. Model 
performance was then evaluated using accuracy, precision, recall, and F1-score, with 
generalizability assessed via five-fold cross-validation. RESULTS Four playing style 
clusters were obtained, each labeled according to players’ technical characteristics: 
“overall weakness type,” “distance-deficient but technically proficient type,” “accuracy-
oriented type,” and “power and risk-management type.” The multinomial logistic 
regression model showed the highest predictive performance, followed by SVM, KNN, 
random forest, and decision tree. CONCLUSIONS This study confirmed that KPGA 
players can be characterized into four distinct playing styles based on their technical 
performance data and that these styles can be effectively classified and predicted 
by supervised learning models. These findings highlight the models’ practical 
applicability in personalizing training strategies, developing course-specific game 
plans, and contributing to the advancement of AI-based sports analytics systems.

https://crossmark.crossref.org/dialog/?doi=10.24985/kjss.2025.36.4.592&domain=pdf&date_stamp=2025-12-31


Korean Journal of Sport Science 2025, 36(4), 592-604kjss.sports.re.kr

Validation of Golf Technical Evaluation Indicators 593

용되고 있으며, 이를 활용한 연구가 활발히 이루어지고 있다.
기존 연구들은 기술 요인이 경기력에 미치는 영향을 분석하거나 

성적 및 상금과의 관계를 규명하는 데 집중되어 왔다(Kim & Kim, 
2010; Son & Kim, 2010; Min, 2011; Kim et al., 2012; Kim & 
Cho, 2013; Kim & Min, 2014; Pyung et al., 2015; Kwon et al., 
2024). 그러나 대부분의 연구는 선수 개개인의 경기 스타일을 고려하
지 않고 전체 집단을 일괄적으로 분석하였다는 한계가 있다. 평균 타
수는 다양한 기술 요인의 영향을 받는 종합적인 지표이기 때문에 같
은 타수를 기록한 선수라도 경기 스타일과 특성에는 차이가 존재할 
수 있다(Kim & Park, 2021). 이에 본 연구자는 기존 선행 연구의 결
과를 모든 선수에게 일괄적으로 적용하기에는 한계가 있을 것이라는 
점에 주목하였다.

즉, 선수들의 경기 스타일과 특성을 고려하지 않고 분석할 경우 선
수 개개인의 강점과 약점을 반영한 최적의 경기 전략을 도출하는 데 
어려움이 있을 것이다. 반면, 선수들의 경기 스타일과 기술적 특성을 
기준으로 구분하여 분석할 경우 보다 정밀하고 객관적인 해석이 가
능하며, 경기력 향상을 위한 맞춤형 전략 수립에도 기여할 수 있다
(Databuckets, 2015). 나아가 이러한 방식으로 도출된 분석 결과를 
통해 다양한 코스 환경에서 선수의 스타일에 따른 강점과 약점을 체계
적으로 파악하고, 이를 바탕으로 전략을 최적화하는 데 활용될 수 있을 
것이다. 이에 본 연구는 골프 선수들의 기술 요인 데이터를 바탕으로 
경기 스타일을 기준으로 군집화한 후, 머신러닝 기법을 적용하여 각 군
집에 대한 자동 분류가 가능한 지도학습 모델을 구축하고자 한다.

최근 스포츠 분야에서는 머신러닝 기법을 활용한 지도학습 기반
의 예측 모델을 개발하는 연구가 활발히 이루어지고 있으며(Choi, 
2022; Kim & Lee, 2023; Kang, 2023; Jo et al., 2023; Kim et 
al., 2024a; Kim et al., 2024b), 이는 경기력 분석의 효율성과 정밀
도를 높이는 데 기여하고 있다. 그러나 대부분 선행 연구는 승패 여
부, 최종 순위와 같은 결과 중심의 변수 예측에 초점을 맞추고 있으
며, 경기력 발현 과정이나 선수의 고유한 경기 스타일에 대한 분석은 
상대적으로 미흡한 실정이다.

특히 골프와 같이 선수 개개인의 기술적 선택과 전략적 의사결정
이 경기 운영 방식에 직접적인 영향을 미치는 종목에서는 결과 자
체보다 어떻게 경기를 했는지에 대한 정량적·정성적 해석이 중요하
다(Smith, 2010). 이에 본 연구는 2015년부터 2024년까지 한국
프로골프협회(KPGA) 코리안투어에 참가한 선수들의 경기력 기술 
요인 데이터를 기반으로 선수들의 경기 스타일을 군집화하고, 이를 
토대로 예측·분류 지도학습 모델을 구축하여 향후 선수의 경기 스
타일을 자동 예측 및 분류할 수 있는 시스템을 개발하는 것에 그 목
적이 있다. 이는 기존의 결과 중심 분석의 한계를 보완하고, 정량적 
경기력 분석의 새로운 방향을 제시한다는 점에서 학술적·실무적 의
의가 있다.

연구방법

자료수집

본 연구에서는 KPGA 홈페이지(https://www.kpga.co.kr/tours/
record/?tourId=11)에서 공개하고 있는 2015년부터 2024년까지 
코리안투어 대회에 참가한 선수들의 경기력 기술 요인 자료를 수집

하여 사용하였다(KPGA, 2024, Table 1). 이때 동일한 선수가 여러 
연도에 중복 포함될 가능성이 있으나, 각 연도별 경기력은 해당 시
즌 선수의 기술적 수준, 코스 환경, 경기 조건 등 다양한 요인에 의
해 달라질 수 있으므로, 동일 선수라 하더라도 각 연도는 독립된 경기
력 데이터(연도 단위의 독립 관측치)로 간주하였다. 또한, American 
Psychological Association(APA, 2017)의 윤리 가이드라인에 따르
면 공개된 데이터를 활용한 2차 분석 연구는 별도의 기관생명윤리위
원회(IRB) 승인 없이 수행할 수 있는 경우에 해당한다. 이에 따라 IRB 
심의 절차는 진행하지 않았으며, 선수 개인을 식별할 수 있는 정보는 
포함하지 않았다.

측정 변인

본 연구에서 사용한 변인은 KPGA(한국프로골프협회) 홈페이지에
서 공개하고 있는 자료 중 본 연구의 목적에 부합한 6개 변인을 선
정하였다(Table 2). 또한, 본 연구에서는 기술-전략 상호작용 관점
(technical–strategic interaction perspective)과 선수의 기술 수
행 패턴을 통한 경기 스타일 유형화에 관한 선행연구(Ball & Best, 
2007; Broadie, 2014)를 이론적 근거로 하여, 6개 기술 변인을 기반
으로 한 기술적 수행 특성에 근거한 ‘경기 스타일’을 조작적으로 정의
하였다.

통계 처리

본 연구에서는 얻어진 데이터를 통계 소프트웨어인 Python(3.13) 
jupyter notebook(7.3.2)의 pandas, scikit-learn 라이브러리
를 활용하여 분석하였다. 먼저 KPGA 코리안투어 선수들의 기
술 요인을 알아보기 위해 기술통계 분석(Descriptive Statistics 
Analysis)을 실시하였고, 기술 요인 간 연관성 및 다중공선성
(Multicollinearity)을 검증하기 위해 피어슨의 상관분석(Pearson’s 
Correlation Analysis)을 실시하였다. 다음으로 수집된 자료를 분
석 가능한 형태로 표준화(z-점수)하였다. 이후 Kim & Park(2021)
의 연구에서 군집의 수를 통계적 근거에 기반하여 설정해야 한다는 
제언에 따라 선행 연구를 참고하여(Go, 2003; Kim & Choi, 2019; 
Choi et al., 2007) 엘보우 기법(Elbow Method)을 통해 최적의 초

Table 1. Collected data

year number of player
1 2015 105
2 2016 98
3 2017 110
4 2018 106
5 2019 104
6 2020 123
7 2021 118
8 2022 116
9 2023 104

10 2024 112
total 1,096
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기 그룹(k) 수를 결정하였다. 이때 군집 수에 따른 WCSS(Within-
Cluster Sum of Squares) 값의 감소 패턴을 분석하여 WCSS의 감
소 폭이 급격히 변화하는 지점인 엘보우 포인트(Elbow Point)를 찾
아 최적의 그룹(k) 수를 결정하였다. 추가적으로 군집 수 결정의 객
관성을 확보하기 위해 실루엣 분석(Silhouette Analysis)과 갭 통계
(Gap Statistic)를 활용하였다. 이후 결정된 K값을 바탕으로 K-평
균 군집분석(K-Means clustering analysis)을 실시하여 선수들의 
기술 요인 특성을 반영한 경기 스타일 유형으로 분류하였다. 이때, 
유사도 기반의 기술 수행 패턴으로 분류된 군집의 특성을 해석하기 
위해 각 군집에 속한 선수들의 기술 요인 특성을 바탕으로 명칭을 부
여하였으며, 이 과정은 골프 경력 10년 이상이면서 KPGA 프로 라
이선스를 보유하고 있는 박사 3인의 자문을 통해 이루어졌다. 또한, 
각 군집에 속한 선수들의 기술 요인의 차이를 알아보기 위해 일원배
치분산분석(one-way ANOVA)을 실시하였고, 각 군집 별 기술 요
인의 통계적으로 유의한 차이를 나타낸 경우 Scheffe를 사용하여 사
후분석을 실시하였다. 마지막으로, 자동 분류 모델을 구축하기 위해 
여섯 가지 기술 요인을 독립변수, 분류된 네 가지 군집을 종속변수로 
설정하였다. 이때 적용된 머신러닝 기법은 총 다섯 가지로, 의사결
정나무(Decision Tree), 랜덤 포레스트(Random Forest), K-최근
접 이웃(K-Nearest Neighbors, KNN), 서포트 벡터 머신(Support 
Vector Machine, SVM), 다항 로지스틱 회귀분석(Multinomial 
Logistic Regression)을 활용하였다.

구축된 각 예측 모델의 성능 평가는 전체 데이터를 무작위로 배열
한 후, 80%를 학습 데이터, 20%를 테스트 데이터로 설정한 뒤, 정
확도(Accuracy), 정밀도(Precision), 재현율(Recall), F1-점수(F1-
Score)를 산출하여 평가하였다. 또한, 모델의 일반화 성능을 확보하
기 위해 k-fold 교차검증(k-fold cross validation)을 10회(5-fold) 
반복 수행하여 평균 및 표준편차 값을 산출하였다. 마지막으로 다섯 
가지 예측 모델 간의 성능을 비교하기 위해 골모고로프-스미르노프
(Kolmogorov-Smirnov test)을 이용하여 정규성 검정을 실시한 결
과, 정규성을 만족하는 것으로 확인하여(p>.05), 모수 통계 검정 방법
인 일원배치분산분석(one-way ANOVA)을 실시하였다. 이때 모델 
간 예측 성능이 통계적으로 유의한 차이를 나타냈을 경우 Scheffe를 
사용하여 사후분석을 실시하였다. 모든 통계적 유의성 검증은 유의 
수준 α= .05로 설정하였다.

머신러닝 기법

본 연구에서 다루는 문제 유형은 다차원적 기술 변인을 기반으로 한 
분류(classification) 문제로, 전통적인 선형 통계 기법만으로는 변수 
간의 비선형적 상호작용을 충분히 반영하기 어렵다(Jeong & Choi, 
2022; Choi et al., 2024). 이러한 관점에서 머신러닝의 지도학습
(supervised learning) 기법은 이러한 한계를 보완하여, 고차원 데이
터 내의 숨은 패턴을 인식하고 다변량 관계를 동시에 탐지할 수 있는 
장점을 지닌다(Tabassum et al., 2022). 특히, 본 연구의 목적은 선
수들의 경기 스타일을 예측·분류하는 자동화 모델 구축에 있으므로, 
훈련 데이터로부터 목표 범주(label)를 학습하는 지도학습 접근이 적
합하다(Davis et al., 2024). 

따라서 본 연구에서는 이러한 이론적 근거에 따라 의사결정나무, 
랜덤 포레스트, KNN, SVM, 다항 로지스틱 회귀 등 다섯 가지 지도
학습 기법을 적용하였으며, 기법에 대한 설명은 다음과 같다.

1) 의사결정나무(Decision Tree)
의사결정나무는 기계학습(Machine Learning)에서 지도학습

(Supervised Learning)의 알고리즘으로 데이터를 탐색하여 분류 
및 예측하기 위한 목적으로 사용된다. 나무의 최상단에 위치하는 루
트노드(root node)는 전체 데이터를 최초로 분할하는 기준이 되
며, 그 아래 내부 노드(internal node)로 분기된다. 각 내부 노드
는 특정 임계값에 따라 데이터를 둘 이상의 가지(branch)로 분할하
고, 최종적으로 더 이상 분할이 필요 없거나 설정된 조건에 도달하
면 리프노드(leaf node)가 되어 최종 예측 결과로 나타난다. 이를 바
탕으로 의사결정나무가 내린 결론을 해석하는 단계를 거치게 된다
(Berry & Linoff, 1997). 의사결정나무는 직관적인 해석이 가능하
고 비교적 해석이 쉽다는 장점을 지니지만, 과적합이 발생하기 쉬
우며 전체적인 선형관계 파악에 미흡하다는 한계를 지닌다(Bishop 
& Nasrabadi, 2006). 본 연구에서는 Scikit-Learn 라이브러리의 
DecisionTreeClassifier 함수를 활용하였다.

2) 랜덤 포레스트(Random Forest)
랜덤 포레스트란, 랜덤으로 추출된 여러 개의 결정 나무가 모여 

숲을 이룬 방식으로, 예측 성능을 높이는 앙상블 기법을 말한다. 랜
덤 포레스트는 데이터 셋(Data set)으로부터 무작위로 데이터를 추
출하여 다수의 결정 나무(Decision tree)를 구축하는데, 큰 수의 법

Table 2. Variables

Variables Label Contents

1 Driving Distance(Yds) DD The mean driving distan ce (yd) meas ured o n two comm ittee-designated holes 
among the 18 holes

2 Fairway Accuracy(%) FA Fairway accuracy was defined as the percentage of tee shots that landed in the fairway, 
excluding par-3 holes

3 Green in Regulation(%) GIR The percentage of holes in which the ball was on the green in regulation

4 Recovery Percentage(%) RP The percentage of holes in which a par or better score was recorded when the ball was 
not on the green in regulation

5 Sand Saves Percentage(%) SSP The percentage of attempts that resulted in a score in regulation when the ball was in a 
greenside bunker

6 Putting Average(stroke) PA The average number of putts on holes where the ball was on the green in regulation
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칙에 따라 의사결정나무의 수가 많아질수록 과적합을 방지할 수 있
으며, 개별 의사결정나무를 학습시킬 때 전체 데이터 셋에서 무작
위로 복원 추출된 데이터를 사용하기 때문에 잡음(noise)이나 이
상치(outlier)로부터 비교적 자유롭다(Kang, 2023). 따라서 유용
한 데이터 분류 및 회귀 알고리즘으로 널리 사용되고 있다(Pathak 
& Wadhwa, 2016). 본 연구에서는 Scikit-Learn 라이브러리의 
RandomForestClassifier 함수를 활용하였으며, 결정 나무의 수를 
100개로 설정하여 학습하였다.

3) K-최근접 이웃(K-Nearest Neighbors, KNN)
K-최근접 이웃은 분류 및 회귀 알고리즘의 한 종류로 N차원의 공

간에서 가까운 거리에 위치한 데이터를 동일한 범주로 분류하는 지
도학습 모델이다(Alonso & Babac, 2022). 다른 지도학습 모델에 
비해 원리가 단순하여 구현이 쉽고 훈련 단계에서 빠른 수행이 가
능해 분류 및 회귀 모델로 많이 사용되고 있다(Horvat, Havaš et 
al., 2020). 그러나, 선택하는 k의 수에 따라 분류되는 그룹의 속
성 및 특성이 달라지기 때문에 데이터의 특성에 따른 적절한 k
의 수를 선택하는 것이 중요하다. 본 연구에서는 Scikit-Learn 라
이브러리의 KNeighbors Classifier 함수를 활용하였으며, 최근
접 이웃의 수(k)는 선행 연구에서 제시한 과적합(overfitting)과 과
소적합(underfitting)의 균형을 고려한 기준값인 5로 설정하였다
(Pedregosa et al., 2011; Tan et al., 2019).

4) 서포트 벡터 머신(Support Vector Machine, SVM)
서포트 벡터 머신은 초평면을 이용하여 다차원(N차원)의 공간을 

N-1 차원으로 나누는 분류 알고리즘이다(Kim, Lee et al., 2024). 
각 변인의 데이터 중 클래스 간 경계에 가까운 데이터 간의 거리가 최
대가 되는 구분선(초평면)을 추산하여 새로운 점이 나타날 때 경계
의 어느 쪽에 속하는지 분류하는 방법이다(Horvat & Jod, 2020). 서
포트 벡터 머신은 선형이나 비선형 문제에 모두 적용 가능하며, 과적
합의 위험이 낮아 분류 학습 모델로 효과적인 기법이다(Kim & Lee, 
2023). 본 연구에서는 Scikit-Learn 라이브러리의 SVC 함수를 활용
하였으며, 최대 반복 횟수는 100으로 설정하였다(Kang, 2023).

5) 다항 로지스틱 회귀분석(Multinomial Logistic Regression)
다항 로지스틱 회귀분석은 세 개 이상의 범주형 종속변수를 다루

는 모형으로, 기준 범주(reference group)와 비교하여 각 범주에 
속할 로즈 오그(log-odds)를 추정하는 통계적 분석 기법이다(Lee, 
2020). 본 연구에서는 엘보우 기법을 통해 최적의 군집 수를 4로 설
정하고, 선수들의 기술 요인 수준에 따른 경기 스타일을 분류하기 
위해 다항 로지스틱 회귀분석을 실시하였다. 또한, Scikit-Learn 
라이브러리의 LogisticRegression 함수를 활용하였으며, multi_
class=multinomial과 solver=lbfgs 옵션을 적용하여 다항 로지스틱 
회귀 분석을 수행하였다.

연구결과
KPGA 코리안투어 선수들의 기술 요인 기술통계 분석

KPGA 코리안투어 선수들의 기술 요인을 알아보기 위해 기술통계 분
석을 실시한 결과는 다음 <Table 3>과 같다.

기술 요인 간 상관관계 분석

본 연구에서 선수들의 경기 스타일을 분류하기 위해 사용된 기술 요
인 간 연관성 및 다중공선성을 검증하기 위해 피어슨의 상관분석을 
실시한 결과, 선행 연구에서 제시한 기준(Dormann et al., 2013)에 
따라 다중공선성 문제는 없는 것으로 판단하였다. 이에 따라 각 기술 
요인은 독립성을 유지한 상태에서 군집화 분석에 활용하기에 적절한 
것으로 판단하였다(Table 4).

군집 수 결정을 위한 통계 기법

최적의 군집 수를 결정하기 위해 엘보우 기법을 실시하여 WCSS 값
의 변화량을 분석하였다. 그 결과, 군집의 수가 4개까지는 WCSS 값이 
급격히 감소하였으며, 군집의 수가 5개 이상부터는 감소 폭이 완만해
지는 경향을 보여 해당 지점을 엘보우 포인트로 설정하였다(Table 5, 
Fig. 1). 또한, 군집 수 결정의 객관성을 확보하기 위해 실루엣 지수와 
갭 통계를 병행 산출하였다. 실루엣 분석 결과, k=4까지 WCSS 값이 
급격히 감소하다가 이후부터는 감소 폭이 점차 완만해지는 경향을 나
타냈으며(Table 6, Fig. 2), 갭 통계에서는 k=3에서 가장 높은 값을 보
였다(Table 7, Fig. 3). 최종적으로 군집 간 분리도 해석 가능성을 종합
적으로 고려한 결과 k=4가 가장 안정적이고 해석 가능한 군집 구조로 
판단되어, 최종적으로 4의 군집을 최적 군집 수로 설정하였다.

Table 3. Descriptive statistics of skill factors

Variables M±SD

1 Driving Distance(Yds) 283.643±9.959

2 Fairway Accuracy(%) 63.712±6.965

3 Green in Regulation(%) 69.282±4.038

4 Recovery Percentage(%) 52.769±5.883

5 Sand Saves Percentage(%) 56.514±11.274

6 Putting Average(stroke) 1.811±.041

Table 4. Correlation analysis among skill factors

DD FA GIR RP SP PA

DD 1 -.600** .166** -.020 .284** -.112**

FA 1 .355** .117** -.137** .024

GIR 1 .154** .294** -.142**

RP 1 .365** -.334**

SSP 1 -.251**

PA 1

**p<.01
DD: Driving Distance, FA: Fairway Accuracy, GIR: Green 
In Regulation, RP: Recovery Percentage, SSP: Sand Saves 
Percentage, PA: Putting Average



https://doi.org/10.24985/kjss.2025.36.4.592Korean Journal of Sport Science 2025, 36(4), 592-604

 H.-s. Kim, H.-s. Cho, J.-Y. Park, and H.-s. Park596

군집 별 특성

세 가지 군집 수 설정 통계기법을 토대로 산출된 4개의 군집에 따라 K-
평균 군집분석을 실시하여, 각 군집에 속한 선수 수와 기술 요인을 알아
보기 위해 기술통계 분석을 실시한 결과와 군집에 속한 선수들의 기술 
요인 특성에 따라 명명된 군집은 다음 <Table 8>, <Fig. 4>와 같다.

군집 별 기술 요인 차이 분석

1) 드라이브 비거리
각 군집에 속한 선수들의 드라이브 비거리의 차이를 검증한 결과 

군집 별 차이가 있는 것으로 나타났다(F=357.405, p<.001). 결과는 
<Table 9>와 같다.

2) 페어웨이 안착률
각 군집에 속한 선수들의 페어웨이 안착률의 차이를 검증한 결과 

군집 별 차이가 있는 것으로 나타났다(F=403.933, p<.001). <Table 
10>과 같다.

3) 그린 적중률
각 군집에 속한 선수들의 그린 적중률의 차이를 검증한 결과 군집 별 

차이가 있는 것으로 나타났다(F=216.294, p<.001). <Table 11>과 같다.

4) 리커버리율
각 군집에 속한 선수들의 리커버리율의 차이를 검증한 결과 군집 

Table 5. WCSS by number of clusters (Elbow Method)

K(Number of clusters) WCSS Reduction
2 5498.604 -
3 4801.022 697.582
4 3337.467 1463.555
5 3032.817 304.65
6 2783.397 249.42
7 2600.733 182.664
8 2482.073 118.66

Fig. 1. WCSS by number of clusters (Elbow Method)

Fig. 2. Silhouette Score by number of clusters (Silhoette Analysis)

Fig. 3. Gap Statistic by number of clusters (Gap Statistic)

Table 6. Silhouette Score by number of clusters (Silhoette Analysis)

K(Number of clusters) Silhiette Score Reduction
2 5272.051 -
3 4428.162 843.892
4 4062.601 365.561
5 3741.332 321.275
6 3536.492 204.848
7 3353.481 183.013
8 3180.607 172.889

Table 7. Gap Statistic by number of clusters (Gap Statistic)

K(Number of clusters) Gap Statistic s(k)
2 1.6762 .0038
3 1.7170 .0103
4 1.6955 .0182
5 1.7008 .0090
6 1.6994 .0108
7 1.6870 .0139
8 1.6936 .0139
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별 차이가 있는 것으로 나타났다(F=168.914, p<.001). <Table 12>
와 같다.

5) 벙커 세이브율
각 군집에 속한 선수들의 벙커 세이브율의 차이를 검증한 결과 군

집 별 차이가 있는 것으로 나타났다(F=230.860, p<.001). <Table 
13>과 같다.

6) 퍼트 수
각 군집에 속한 선수들의 퍼트 수의 차이를 검증한 결과 군집 별 차

이가 있는 것으로 나타났다(F=87.368, p<.001). <Table 14>와 같다.

Table 8. Skill factor characteristics and cluster labeling

Cluster Label n DD(Yard) FA(%) GIR(%) RP(%) SSP(%) PA(Stroke)

C1 Overall  
Low-Performance Type 156 280.890±7.896 59.234±5.320 63.563±3.792 47.583±5.837 47.098±10.548 1.833±.044

C2 Distance-Limited but  
Skill-Dominant Type 296 281.269±6.751 67.229±4.608 71.474±3.034 57.577±4.849 63.927±8.339 1.787±.033

C3 Accuracy-Specialist Type 319 276.600±7.292 68.940±4.393 69.753±2.971 51.032±4.538 49.341±9.317 1.829±.036

C4 Long-Hitter with  
Risk-Management Type 325 294.039±6.753 57.528±5.088 69.568±3.236 52.584±4.688 61.321±7.818 1.806±.036

DD: Driving Distance, FA: Fairway Accuracy, GIR: Green In Regulation, RP: Recovery Percentage, SSP: Sand Saves Percentage,  
PA: Putting Average

Table 9. Driving distance (Yds)

Cluster M SE F(p) post-hoc (Scheffe)
C1 280.890 7.896

357.405***
C4 > C2*** = 
C1 > C3***

C2 281.269 6.751
C3 276.600 7.292
C4 294.039 6.753

***p<.001 

Table 11. Green in regulation (%)

Cluster M SE F(p) post-hoc (Scheffe)

C1 63.563 3.792

216.294***
C2 > C3*** = 
C4 > C1***

C2 71.474 3.034
C3 69.753 2.971
C4 69.568 3.236

***p<.001 

Table 12. Recovery percentage (%)

Cluster M SE F(p) post-hoc (Scheffe)

C1 47.583 5.837

168.914***
C2 > C4*** > 

C3*** > C1***
C2 57.577 4.849

C3 51.032 4.538

C4 52.584 4.688
***p<.001 

Table 13. Sand saves percentage (%)

Cluster M SE F(p) post-hoc (Scheffe)

C1 47.098 10.548

230.860*** C2 > C1*** > 
C4* > C3***

C2 63.927 8.339
C3 49.341 9.317
C4 61.321 7.818

*p<.05, ***p<.001 

Table 10. Fairway accuracy (%)

Cluster M SE F(p) post-hoc (Scheffe)
C1 59.234 5.320

403.933***
C3 > C2*** > 
C1** > C4*

C2 67.229 4.608
C3 68.940 4.393
C4 57.528 5.088

*p<.05, **p<.01, ***p<.001 

Fig. 4. Characteristics by cluster

Driving Distance

Recovery Percentage

Fairway 
Accuracy

Green in 
Regulation

Sand Saves 
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Putting 
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Decision Tree 지도학습 모델의 예측 성능 평가

K-평균 군집 방법을 활용하여 선수들의 경기 스타일 그룹으로 분류
된 결과를 학습 데이터로 사용하여 구축 된 지도학습 모델(Decision 
Tree)의 예측 성능을 평가한 결과, 정확도 .818, 정밀도 .813±.033, 
재현율 .802±.065, F1-점수 .807±.045로 나타났다. 또한 K-fold 
교차검증을 진행하여 각 모델 성능 평가 지표의 값을 산출한 결과, 정
확도 .792±.022, 정밀도 .784±.028, 재현율 .778±.023, F1-점수 
.779±.026로 나타난 것을 확인하였다(Table 15).

Random Forest 지도학습 모델의 예측 성능 평가

K-평균 군집 방법을 활용하여 선수들의 경기 스타일 그룹으로 분류
된 결과를 학습 데이터로 사용하여 구축 된 지도학습 모델(Random 
Forest)의 예측 성능을 평가한 결과, 정확도 .900, 정밀도 .908
±.038, 재현율 .892±.053, F1-점수 .899±.022로 나타났다. 또한 
K-fold 교차검증을 진행하여 각 모델 성능 평가 지표의 값을 산출한 
결과, 정확도 .904±.022, 정밀도 .909±.023, 재현율 .890±.024, 
F1-점수 .897±.024로 나타난 것을 확인하였다(Table 16).

KNN 지도학습 모델의 예측 성능 평가

KNN 지도학습 모델의 예측 성능을 평가한 결과, 정확도 .945, 정밀
도 .954±.038, 재현율 .936±.048, F1-점수 .944±.015로 나타났

다. 또한 K-fold 교차검증을 진행하여 각 모델 성능 평가 지표의 값을 
산출한 결과, 정확도 .894±.020, 정밀도 .898±.020, 재현율 .879
±.023, F1-점수 .886±.021로 나타난 것을 확인하였다(Table 17).

SVM 지도학습 모델의 예측 성능 평가

SVM 지도학습 모델의 예측 성능을 평가한 결과, 정확도 .977, 정밀
도 .98±.019, 재현율 .972±.028, F1-점수 .976±.007로 나타났다. 
또한 K-fold 교차검증을 진행하여 각 모델 성능 평가 지표의 값을 
산출한 결과, 정확도 .959±.015, 정밀도 .959±.015, 재현율 .954
±.018, F1-점수 .956±.016로 나타난 것을 확인하였다(Table 18).

다항 로지스틱 회귀분석 지도학습 모델의 예측 성능 평가

다항 로지스틱 회귀분석 지도학습 모델의 예측 성능을 평가한 결과, 
정확도 .982, 정밀도 .984±.008, 재현율 .981±.01, F1-점수 .982
±.003로 나타났다. 또한 K-fold 교차검증을 진행하여 각 모델 성
능 평가 지표의 값을 산출한 결과, 정확도 .982±.011, 정밀도 .984
±.010, 재현율 .981±.012, F1-점수 .982±.011로 나타난 것을 확
인하였다(Table 19).

Table 15. Performance evaluation metrics of the decision tree model

Cluster Accuracy Precision Recall F1-Score
C1 - .767 .697 .730
C2 - .825 .810 .817
C3 - .805 .873 .838
C4 - .857 .828 .842

Average .818 .813±.033 .802±.065 .807±.045
K-fold .792±.022 .784±.028 .778±.023 .779±.026

Table 16. Performance evaluation metrics of the random forest model

Cluster Accuracy Precision Recall F1-Score
C1 - .966 .848 .903
C2 - .891 .845 .867
C3 - .893 .945 .918
C4 - .885 .931 .908

Average .900 .908±.038 .892±.053 .899±.022
K-fold .904±.022 .909±.023 .890±.024 .897±.024

Table 17. Performance evaluation metrics of the KNN model

Cluster Accuracy Precision Recall F1-Score
C1 - 1.000 .871 .931
C2 - .966 .933 .949
C3 - .940 .984 .962
C4 - .912 .954 .932

Average .945 .954±.038 .936±.048 .944±.015
K-fold .894±.020 .898±.020 .879±.023 .886±.021

Table 18. Performance evaluation metrics of the SVM model

Cluster Accuracy Precision Recall F1-Score
C1 - 1.000 .935 .967
C2 - .983 .983 .933
C3 - .955 1 .977
C4 - .984 .969 .977

Average .977 .98±.019 .972±.028 .976±.007
K-fold .959±.015 .959±.015 .954±.018 .956±.016

Table 19. Performance evaluation metrics of the logistic regression 
model

Cluster Accuracy Precision Recall F1-Score

C1 - .975 .983 .979
C2 - .981 .991 .986
C3 - .984 .982 .983
C4 - .994 .967 .980

Average 982±.011 984±.008 .981±.01 .982±.003
K-fold 982±.011 .984±.010 .981±.012 .982±.011

Table 14. Putting average (stroke)

Cluster M SE F(p) post-hoc (Scheffe)
C1 1.833 .044

87.368***
C2 < C4*** < 
C3*** = C1

C2 1.787 .033
C3 1.829 .036
C4 1.806 .036

***p<.001 
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지도학습 모델 간 예측 성능 차이 분석

본 연구에서 활용한 다섯 가지 지도학습 모델 간 예측 성능(정확도, 
정밀도, 재현율, F1-점수)의 차이를 알아보기 위해 일원배치분산분
석을 실시한 결과, 지도학습 모델 간 모든 예측 성능 지표에서 통계적
으로 유의한 차이가 있는 것으로 나타났다. 사후분석 결과, 모든 예
측 성능 지표에서 다항 로지스틱 회귀분석, 서포트 벡터 머신, K-최
근접 이웃, 랜덤 포레스트, 의사결정나무 순의 예측 성능을 나타냈다
(Table 20).

논 의

본 연구에서 KPGA 선수들의 경기력 기술 요인 데이터를 기반으로 
선수들의 경기 스타일에 따라 군집화하고, 이를 토대로 예측·분류 지
도학습 모델을 구축하여 각 모델의 성능을 평가한 결과에 대한 논의
는 다음과 같다.

첫째, 본 연구에서는 KPGA 선수들의 기술 요인 데이터를 기반으
로 경기 스타일에 따라 K-평균 군집화를 실시하기 전, 최적의 군집 
수를 설정하기 위해 엘보우 기법을 사용하였으며, 보완 지표로 실루
엣 지수와 갭 통계를 병행 사용하였다. 엘보우 기법을 실시한 결과, k 
=4까지는 WCSS 값이 급격히 감소하였고, k=5 이상부터는 감소 폭
이 완만해지는 양상을 나타냈다. 이는 K=4로 설정하였을 때 군집화
의 효율성과 해석 가능성 간 균형을 잘 반영하는 지점이라 판단할 수 
있으며, K>4부터는 오히려 의미 없는 군집의 수가 늘어나는 것으로 
판단할 수 있다. 이후 실루엣 분석에서도 K=4까지는 군집의 품질이 
비교적 높게 유지되다가 이후 감소 폭이 점차 완만해지는 경향을 보
였으며, 갭 통계에서는 K=3에서 가장 높은 값을 나타냈다. 이러한 결
과를 기반으로 통계적 안정성과 군집 간 분리도 해석 가능성을 종합
적으로  고려하였을 때, 최종적으로 K=4가 최적의 군집 수로 판단하
였다. 이는 선행 연구(Kim & Park, 2021; Go, 2003; Kim & Choi, 
2019; Choi et al., 2007)에서 제시한 바와 같이, 군집 수 결정 시 통
계적 기준과 실질적 해석 가능성을 모두 고려해야 한다는 주장과 일
치한다. 따라서 본 연구에서 도출된 k=4는 수치적 타당성과 해석적 
타당성을 확보한 결과로서, 향후 KPGA 선수들의 경기 스타일을 기
술 요인 수준에서 유형화하는 기초 근거로 활용할 수 있을 것으로 판
단된다.

둘째, 엘보우 기법을 토대로 산출된 4개의 군집을 바탕으로 K-평
균 군집 분석을 통해 선수들을 4개의 군집으로 분류한 뒤, 6가지 기
술 요인에 대한 군집 간 차이를 분석하였다. 그 결과, 모든 기술 요인

에서 군집 간 통계적으로 유의한 차이가 나타났으며(p<.001), 이는 
분류된 각 군집의 구조적 타당성을 뒷받침해주는 결과로 해석할 수 
있다. 이는 골프 경기력이 단순히 평균 타수나 상금 순위와 같은 결과 
지표만으로 설명되기 보다는 선수의 기술적 역량과 경기 운영 방식의 
복합적 작용에 의해 형성된다는 점을 시사한다.

각 군집에 속한 선수들의 경기 스타일을 고려하여 각 군집을 명명
하였으며, 그 결과는 다음과 같다. 먼저, C1 군집은 ‘전반적 약세형’
으로 명명되었다. 이 군집은 드라이브 거리에서는 중간 정도의 수준
을 나타냈으나, 페어웨이 안착률, 그린 적중률, 리커버리율, 벙커 세
이브율, 퍼트 수까지 모든 기술 요인에서 가장 낮은 수준을 보였다. 
이러한 결과는 C1 군집의 선수들이 특정 기술 요소의 향상만으로
는 경기력 개선이 어려운, 즉 전반적 기술 역량의 부족 상태에 있음
을 시사한다. 골프는 다양한 기술 요소가 상호작용하여 성과를 결정
하는 종목으로, 일정 수준 이상의 기술 균형이 확보되지 않으면 경
기력 향상에 한계가 존재한다(Shin, 2015). 또한, 기술 요인 간 불균
형은 경기 내 일관성을 저하시켜 전략적 의사결정의 폭을 제한할 수 
있다. 따라서 C1 군집에 속한 선수들은 단일 기술의 강화보다는 전
반적인 기술 요인 간 상호보완적 균형을 중점으로 한 트레이닝 접근
이 필요하다. 이는 기술·전략 상호작용 관점에서 볼 때, 전략적 선택
의 폭을 넓히기 위해서는 기술적 안정성이 선행되어야 함을 시사한다
(McPherson & Kernodle, 2007).

C2 군집은 ‘거리 약세·기술 우수형’으로 명명되었다. 해당 군집 선
수들의 드라이브 거리는 비교적 낮은 수준에 속했으나, 그린 적중률, 
리커버리율, 벙커 세이브율, 퍼트 수 등 모든 기술 요인에서 가장 뛰
어난 수준을 나타내 정확성 중심의 경기 운영 특성을 나타냈다. 이러
한 결과는 공격적인 장타보다는 안정적인 샷 운영을 통해 스코어 손
실을 최소화하려는 전략적 의사결정의 결과로 해석될 수 있다. 따라
서 C2 군집에 속한 선수들이 비거리가 다소 부족하더라도 뛰어난 정
확성과 위기 대응 능력을 바탕으로 안정적인 경기 운영이 가능함을 
시사한다. Broadie and Rendleman(2013)은 프로 골퍼의 경기 전
략을 분석한 연구에서, 정확성과 위험을 관리하는 전략이 경기력 향
상에 핵심적 요인임을 제시하였으며, Broadie(2014) 역시 거리보
다 정확성과 퍼팅 효율의 조합이 스코어 개선에 더 큰 영향을 미친다
고 주장하였다. 이러한 맥락에서 C2 군집의 선수들은 장타보다는 정
확성과 실수 최소화에 초점을 둔 보수적 경기 운영을 통해 경기 흐름
을 관리하는 경향을 보인다. 이와 더불어 선행 연구(Lee & So, 2019; 
Kim, 2016; Lee, 2018)에서는 일반적으로 긴 드라이브 거리가 경기
력 향상에 유리한 것으로 보고되었으나, Kwon et al.(2024)의 연구
에서는 드라이브 거리가 평균 타수(par 4, par 5)에 유의한 영향을 미
치지 않는 것으로 밝힌 바 있다. 이러한 점을 종합해 봤을 때, C2 군

Table 20. Analysis of differences in predictive performance among supervised learning models

SS Between df MS F(p) post-hoc (Scheffe)
Accuracy .159 4 .040 929.094*** a<b***=c<d***<e***
Precision .157 4 .039 971.922*** a<b***=c<d***<e***

Recall .159 4 .040 929.094*** a<b***=c<d***<e***
F1-score .161 4 .0404 913.288*** a<b***=c<d***<e***

***p<.001 
a= Decision Tree, b=Random Forest, c= K-Nearest Neighbors, d= Support Vector Machine, e= Multinomial Logistic Regression
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집의 선수들은 무리한 장타를 시도하기보다는 현재의 정확성 기반 전
략을 유지하되, 짧은 비거리를 보완할 수 있는 정교한 코스 매니지먼
트 전략을 강화함으로써 경기력의 지속적 향상을 도모할 필요가 있을 
것으로 판단된다

C3 군집은 ‘정확성 특화형’으로 명명되었다. 이는 Ball and 
Best(2007)가 제시한 기술적 효율성과 재현성을 강조하는 경기 스타
일 유형과 유사한 특성을 나타내는 것을 확인하였다. 이 군집에 속한 
선수들은 드라이브 거리가 가장 짧았으나, 페어웨이 안착률과 그린 
적중률에서 높은 수준을 나타냈다. 이는 정확성 중심의 보수적 경기 
운영 전략을 활용하는 스타일로 해석된다. 다수의 선행 연구에서는 
그린 적중률과 페어웨이 안착률이 평균 타수에 유의한 영향을 미치
는 핵심 기술 요인으로 보고하였으며(Hur, 2005; Heo et al., 2006; 
Kim & Seo, 2015; Kim, 2016; Kwon et al., 2024), 이러한 관점
에서 C3 군집의 경기 운영 방식은 기술적 효율성이 높은 유형으로 평
가될 수 있다. 따라서 C3 군집에 속한 선수들은 현재의 정확성을 유
지하는 동시에 숏게임과 퍼팅 능력 향상을 통한 마무리 완성도를 높
이는 방향으로 훈련 전략을 설정해야 할 것으로 판단된다.

마지막으로 C4 군집은 ‘장타 및 위험 관리형’으로 명명되었다. 이 
군집에 속한 선수들은 가장 긴 드라이브 거리를 기록했으며, 리커버
리율과 벙커 세이브율 또한 높은 수준을 나타냈다. 반면, 페어웨이 안
착률은 가장 낮아 티 샷 정확도에서 다소 취약한 특성을 보였다. 이러
한 결과는 단순한 기술적 구분을 넘어 골프 경기력의 결정 요인을 설
명하는 기존 이론 틀과도 연계해 해석될 수 있다. Broadie(2014)의 
경기력 결정요인론에서 제시한 거리(distance)와 리스크 관리(risk 
management) 요소의 상호작용을 반영한다. 또한, 이는 경기 전략
적 의사결정이 기술 수행에 직접적인 영향을 미친다는 기술 수행과 
전략·전술적 의사결정의 상호작용 관점(McPherson & Kernodle, 
2007)과도 부합한다. 장타는 경기 중 클럽 선택과 전략적으로 중요한 
장점으로 작용하지만(Lee, 2018) 동시에 정확도가 낮을 경우 스코어
의 변동성이 커질 수 있는 위험 요인으로 작용할 수 있다(Wiseman 
et al., 2011). 본 연구 결과에서도 C4 군집의 선수들은 장타 기반의 
공격적인 전략과 더불어 위기 상황에서의 회복 능력을 통해 이러한 
변동성을 보완하고 있는 것으로 해석된다. 따라서 본 군집의 선수들
은 장타 능력을 유지하면서도 정확도 향상과 위기 상황에서의 안정적 
대응을 통해 경기 운영의 일관성을 제고할 필요가 있을 것으로 판단
된다.

셋째, K-평균 군집 분석을 통해 분류된 선수들의 경기 스타일을 기
반으로 지도학습 모델을 구축하고, 다양한 지도학습 모델의 예측 성
능의 차이를 검증하기 위해 일원배치분산분석을 실시하였다. 그 결
과, 지도학습 모델 간 예측 성능은 통계적으로 유의한 차이를 나타
냈으며(p<.05), 사후검정을 통해 이러한 차이를 구체적으로 확인하
였다. 그 중 다항 로지스틱 회귀분석이 정확도 .982, 정밀도 .984
±.008, 재현율 .981±.01, F1-점수 .982±.003로 모든 모델 중 가
장 뛰어난 성능을 기록하였으며, K-fold 교차검증에서도 유사한 양
상이 반복되어 본 모델이 우수한 일반화 성능을 갖추고 있음을 확인
할 수 있었다. 이는 로지스틱 회귀가 다중 클래스 분류 문제에서 안
정성과 해석 용이성을 갖춘 기법임을 강조한 선행 연구(Kim & Lee, 
2023; Kim, Park et al., 2024)의 결과와도 일치한다. 다음으로 서
포트 벡터 머신 또한 정확도 .977, 정밀도 .98±.019, 재현율 .972
±.028, F1-점수 .976±.007 다항 로지스틱 회귀분석과 근접한 수준
의 매우 높은 성능을 나타냈다. SVM은 과적합 가능성이 낮고, 고차원 

정형 데이터 분류에 적합한 기법으로, 이러한 특성을 강조한 선행 연
구(Cortes & Vapnik, 1995; Noble, 2006; Pai et al., 2017; Kim 
& Lee, 2023)의 결과와 본 연구의 결과가 일치하는 것을 확인하였
다. 반면, 의사결정나무 모델은 정확도 .818, 정밀도 .813±.033, 재
현율 .802±.065, F1-점수 .807±.045로 가장 낮은 성능을 보였다. 
의사결정나무는 해석이 용이하고 직관적 분류가 가능한 장점(Horvat 
& Job, 2020)이 있음에도 불구하고 본 연구와 같이 다차원적인 기술 
요인이 복합적으로 작용하는 문제 상황에서는 과적합 및 분류 불안 
정성이 발생할 수 있는 문제로 인한 것으로 해석된다. 이러한 특성은 
의사결정나무의 구조적 한계를 지적한 선행 연구와 일치한다(Bishop 
& Nasrabadi, 2006). 이와 비교해 랜덤 포레스트 모델은 의사결정
나무의 불안정성을 보완하여 정확도 .900, 정밀도 .908±.038, 재현
율 .892±.053, F1-점수 .899±.022로 의사결정나무보다 향상된 성
능을 보였다. KNN 모델 역시 정확도 .945, 정밀도 .954±.038, 재
현율 .936±.048, F1-점수 .944±.015로 우수한 성능을 나타냈다. 
다만, KNN은 학습 속도가 빠른 장점을 가지고 있으나, 예측 시 연
산량이 많고 데이터 밀도나 분포에 따라 성능 변동이 클 수 있어, 실
시간 예측 시스템에는 상대적으로 불리하게 작용할 수 있다(Horvat, 
Stanojević et al., 2020).

본 연구에서 활용한 5개 지도학습 모델의 예측 성능을 비교·분석
한 결과를 정리해 보자면, 다항 로지스틱 회귀분석, 서포트 벡터 머
신, K-최근접 이웃, 랜덤 포레스트, 의사결정나무 순의 예측 성능을 
나타냈으며, 모든 모델이 군집화된 경기 스타일을 일정 수준 이상으
로 정확하게 분류할 수 있는 성능을 확인하였다. 특히 다항 로지스틱 
회귀분석과 서포트 벡터 머신이 가장 높은 예측력과 안정성을 나타
낸다는 점에서 KPGA 선수들의 경기 스타일을 분류 및 예측하는 데 
있어 우선적으로 고려될 수 있는 모델임을 시사한다. 이러한 결과는 
골프 종목에서 선수들의 기술 요인 데이터를 기반으로 경기 스타일
을 자동으로 분류하고 예측하는 지도학습 기반 모델의 적용 가능성
을 뒷받침한다.

결론 및 제언
 

본 연구는 KPGA 투어 선수들의 6가지 경기력 기술 요인 데이터를 
바탕으로 선수들의 경기 스타일을 군집화하고, 이를 기반으로 지도학
습 모델을 구축하여 향후 선수의 경기 스타일을 자동으로 예측 및 분
류할 수 있는 시스템을 개발하여 적용 가능성을 검증하고자 진행되었
다. 그 결과, 다음과 같은 결론을 도출하였다.

첫째, KPGA 코리안투어 선수들의 경기 스타일은 기술 요인에 따
라 4개의 군집으로 분류되었다.

둘째, 각 군집은 기술 특성에 따라 ‘전반적 약세형’(C1), ‘거리 약세·
기술 우수형’(C2), ‘정확성 특화형’(C3), ‘장타·위험 관리형’(C4)으로 
명명되었으며, 각 유형은 뚜렷한 기술 요인의 조합으로 구분되었다.

셋째, 선수들의 경기 스타일을 자동으로 예측·분류할 수 있는 지도
학습 모델을 검증하기 위해 5가지 지도학습 기법을 적용한 결과, 다
항 로지스틱 회귀분석이 가장 높은 성능을 나타냈으며, SVM, KNN, 
랜덤 포레스트, 의사결정나무 순의 예측 성능을 나타냈다.

결론적으로, 본 연구에서 설정한 군집화 기반 분석은 기존의 평균 
타수 중심의 일률적 접근 방식과 달리, 선수 개인의 기술적 조합과 경
기 스타일을 정밀하게 구분할 수 있는 분석 방법임을 시사한다. 아울
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러, KPGA 코리안투어 선수들의 경기 스타일은 기술 요인 데이터를 
기반으로 4개의 유형으로 명확히 분류될 수 있으며, 이를 자동으로 
분류·예측할 수 있는 지도학습 기반 모델의 적용 가능성도 확인되었
다. 이러한 결과는 향후 선수 맞춤형 훈련 전략 수립, 코스 환경에 따
른 경기 운영 전략 도출, 나아가 AI 기반 스포츠 분석 시스템 개발에 
있어 실질적인 기여 가능성을 기대한다. 

다만, 본 연구에서는 군집화 분석을 통해 선수들의 경기 스타일을 
분류하였으나, 각 스타일 유형이 평균 타수와 같은 실질적 경기 성과
에 어떤 영향을 미치는지에 대한 직접적인 분석은 수행하지 못했다. 
따라서 후속 연구에서는 각 경기 스타일 별로 평균 타수에 유의한 영
향을 미치는 핵심 기술 요인을 규명함으로써, 스타일 특성에 기반한 
구체적 기술 역량 도출이 이루어질 필요가 있을 것으로 사료된다.
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[목적] 본 연구는 KPGA 선수들의 경기력 기술 요인 데이터를 기반으로 선수들의 경기 스타일을 유형화하고, 이를 자동으
로 분류할 수 있는 지도학습 기반 모델을 구축하여 적용 가능성을 검토하는 데 목적이 있다. 
[방법] 2015년부터 2024년까지 KPGA 코리안투어에 참가한 선수들의 6가지 경기력 기술 요인 데이터를 수집하여 분석에 
활용하였다. 기술 요인을 z-점수로 표준화한 뒤, K-평균 군집분석을 통해 선수들의 경기 스타일을 군집화하고, 이를 바탕
으로 다섯 가지 지도학습 기법(의사결정나무, 랜덤 포레스트, K-최근접 이웃, 서포트 벡터 머신, 다항 로지스틱 회귀)을 적
용하여 자동 분류 모델을 구축하였다. 각 모델의 예측 성능은 정확도, 정밀도, 재현율, F1-점수를 기준으로 평가하였으며, 
5-fold 교차검증을 통해 일반화 성능을 검증하였다. 
[결과] 첫째, KPGA 선수들의 경기 스타일은 4개의 유형으로 군집화되었으며, 각 군집은 기술적 특성에 따라 ‘전반적 약세
형’, ‘거리 약세·기술 우수형’, ‘정확성 특화형’, ‘장타·위험 관리형’으로 명명되었다. 둘째, 지도학습 기법 비교 결과, 다항 
로지스틱 회귀분석이 가장 높은 예측 성능을 보였으며, SVM, KNN, 랜덤 포레스트, 의사결정나무 순의 예측 성능을 나타
냈다. 
[결론] KPGA 코리안투어 선수들의 경기 스타일은 기술 요인 데이터를 기반으로 4개의 그룹으로 명확히 구분될 수 있으며, 
이를 자동으로 분류·예측할 수 있는 지도학습 기반 모델의 적용 가능성 또한 확인되었다. 이러한 결과는 향후 선수 맞춤형 
훈련 전략 수립, 코스 환경별 경기 운영 전략 도출, 나아가 AI 기반 스포츠 분석 시스템 개발에 있어 실질적인 기여를 할 수 
있을 것으로 기대된다.
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