Abe, T., Kazama, R., Okauchi, H., & Oishi, K. (2019). Food deprivation during active phase induces skeletal muscle atrophy via IGF-1 reduction in mice.
Archives of Biochemistry and Biophysics, 677: 108160.
Albrecht, U. (2013). Circadian clocks and mood-related behaviors. In A. Kramer, & M. Merrow (Eds.), Circadian clocks (pp. 227-239). Berlin, Germany: Springer.
Antoni, R., Johnston, K. L., Collins, A. L., & Robertson, M. D. (2017). Effects of intermittent fasting on glucose and lipid metabolism.
Proceedings of the Nutrition Society, 76(3), 361-368.
Arellanes-Licea, E. D. C., Pérez-Mendoza, M., Carmona-Castro, A., Díaz-Muñoz, M., & Miranda-Anaya, M. (2021). Obese Neotomodon alstoni mice exhibit sexual dimorphism in the daily profile of circulating melatonin and clock proteins PER1 and BMAL1 in the hypothalamus and peripheral oscillators.
Chronobiology International, 38(4), 584-597.
Aschoff, J. (1983). Circadian control of body temperature.
Journal of Thermal Biology, 8(1-2), 143-147.
Bae, S.-A., Androulakis, I. P. (2017). The synergistic role of light-feeding phase relations on entraining robust circadian rhythms in the periphery.
Gene regulation and Systems Biology, 11.
Baehr, E. K., Eastman, C. I., Revelle, W., Olson, S. H. L., Wolfe, L. F., & Zee, P. C. (2003). Circadian phase-shifting effects of nocturnal exercise in older compared with young adults.
American Journal Physiology-Regulatory, Integrative and Comparative Physiology, 284(6), R1542-R1550.
Bessot, N., Nicolas, A., Moussay, S., Gauthier, A., Sesboüé, B., & Davenne, D. (2006). The effect of pedal rate and time of day on the time to exhaustion from high‐intensity exercise.
Chronobiology International, 23(5), 1009-1024.
Borengasser, S. J., Kang, P., Faske, J., Gomez-Acevedo, H., Blackburn, M. L., Badger, T. M., & Shankar, K. (2014). High fat diet and in utero exposure to maternal obesity disrupts circadian rhythm and leads to metabolic programming of liver in rat offspring.
PLoS One, 9(1), e84209.
Bruns, D. R., Yusifova, M., Marcello, N. A., Green, C. J., Walker, W. J., & Schmitt, E. E. (2020). The peripheral circadian clock and exercise: Lessons from young and old mice.
Journal of Circadian Rhythms, 18(7),
Busillo, J. M., Cidlowski, J. A. (2013). The five Rs of glucocorticoid action during inflammation: Ready, reinforce, repress, resolve, and restore.
Trends in Endocrinology & Metabolism, 24(3), 109-119.
Cappuccio, F. P., Taggart, F. M., Kandala, N.-B., Currie, A., Peile, E., Stranges, S., & Miller, M. A. (2008). Meta-analysis of short sleep duration and obesity in children and adults.
Sleep, 31(5), 619-626.
Chaix, A., Zarrinpar, A., Miu, P., & Panda, S. (2014). Time-restricted feeding is a preventative and therapeutic intervention against diverse nutritional challenges.
Cell Metabolism, 20(6), 991-1005.
Chennaoui, M., Vanneau, T., Trignol, A., Arnal, P., Gomez-Merino, D., Baudot, C., ... & Chalabi, H. (2021). How does sleep help recovery from exercise-induced muscle injuries?
Journal of Science and Medicine in Sport, 24(10), 982-987.
Chtourou, H., Souissi, N. (2012). The effect of training at a specific time of day: A review.
The Journal of Strength and Conditioning Research, 26(7), 1984-2005.
Cipolla-Neto, J., Amaral, F. G., Afeche, S. C., Tan, D. X., & Reiter, R. J. (2014). Melatonin, energy metabolism, and obesity: A review.
Journal of Pineal Research, 56(4), 371-381.
Colberg, S. R., Zarrabi, L., Bennington, L., Nakave, A., Somma, C. T., Swain, D. P., & Sechrist, S. R. (2009). Postprandial walking is better for lowering the glycemic effect of dinner than pre-dinner exercise in type 2 diabetic individuals.
Journal of the American Medical Directors Assocication, 10(6), 394-397.
Crosby, P., Hamnett, R., Putker, M., Hoyle, N. P., Reed, M., Karam, C. J., ... & O’Neill, J. S. (2019). Insulin/IGF-1 drives PERIOD synthesis to entrain circadian rhythms with feeding time.
Cell, 177(4), 896-909.
Cutolo, M. (2019). Circadian rhythms and rheumatoid arthritis.
Joint Bone Spine, 86(3), 327-333.
de Brito, L. C., Rezende, R. A., da Silva, N. D., Tinucci, T., Casarini, D. E., Cipolla-Neto, J., & Forjaz, C. L. M. (2015). Post-exercise hypotension and its mechanisms differ after morning and evening exercise: A randomized crossover study.
PLoS One, 10(7), e0132458.
Deschodt, V. J., Arsac, L. M. (2004). Morning vs. evening maximal cycle power and technical swimming ability. The Journal of Strength and Conditioning Research, 18(1), 149-154.
Dibner, C., Gachon, F. (2015). Circadian dysfunction and obesity: Is leptin the missing link?
Cell Metabolism, 22(3), 359-360.
Difrancesco, S., Lamers, F., Riese, H., Merikangas, K. R., Beekman, A. T. F., van Hemert, A. M., ... & Penninx, B. W. J. H. (2019). Sleep, circadian rhythm, and physical activity patterns in depressive and anxiety disorders: A 2-week ambulatory assessment study.
Depression and Anxiety, 36(10), 975-986.
Dimova, E. Y., Jakupovic, M., Kubaichuk, K., Mennerich, D., Chi, T. F., Tamanini, F., ... & Kietzmann, T. (2019). The circadian clock protein CRY1 is a negative regulator of HIF-1α.
iScience, 13: 284-304.
Duglan, D., Lamia, K. A. (2019). Clocking in, working out: Circadian regulation of exercise physiology.
Trends in Endocrinology & Metabolism, 30(6), 347-356.
Elherik, K., Khan, F., McLaren, M., Kennedy, G., & Belch, J. J. F. (2002). Circadian variation in vascular tone and endothelial cell function in normal males.
Clinical Science, 102(5), 547-552.
Fernandes, A. L., Lopes-Silva, J. P., Bertuzzi, R., Casarini, D. E., Arita, D. Y., Bishop, D. J., & Lima-Silva, A. E. (2014). Effect of time of day on performance, hormonal and metabolic response during a 1000-M cycling time trial.
PLoS One, 9(10), e109954.
Fisk, A. S., Tam, S. K. E., Brown, L. A., Vyazovskiy, V. V., Bannerman, D. M., & Peirson, S. N. (2018). Light and cognition: Roles for circadian rhythms, sleep, and arousal.
Frontiers in Neurology, 9(56),
Frøsig, C., Richter, E. A. (2009). Improved insulin sensitivity after exercise: Focus on insulin signaling.
Obesity, 17(53), S15-S20.
Froy, O., Miskin, R. (2010). Effect of feeding regimens on circadian rhythms: Implications for aging and longevity.
Aging(Albany NY), 2(1), 7-27.
Gabel, K., Hoddy, K. K., Haggerty, N., Song, J., Kroeger, C. M., Trepanowski, J. F., ... & Varady, K. A. (2018). Effects of 8-hour time restricted feeding on body weight and metabolic disease risk factors in obese adults: A pilot study.
Nutrition and Healthy Aging, 4(4), 345-353.
Gallego, M., Virshup, D. M. (2007). Post-translational modifications regulate the ticking of the circadian clock.
Nature Reviews Molecular Cell Biology, 8(2), 139-148.
Gill, J. M. R., Al-Mamari, A., Ferrell, W. R., Cleland, S. J., Perry, C. G., Sattar, N., ... & Petrie, J. R. (2007). Effect of prior moderate exercise on postprandial metabolism in men with type 2 diabetes: heterogeneity of responses.
Atherosclerosis, 194(1), 134-143.
Gnocchi, D., Bruscalupi, G. (2017). Circadian rhythms and hormonal homeostasis: Pathophysiological implications.
Biology, 6(1), 10.
Hannemann, J., Laing, A., Glismann, K., Skene, D. J., Middleton, B., Staels, B., ... & Böger, R. (2020). Timed physical exercise does not influence circadian rhythms and glucose tolerance in rotating night shift workers: The EuRhythDia study.
Diabetes and Vascular Disease Research, 17(5),
Hara, R., Wan, K., Wakamatsu, H., Aida, R., Moriya, T., Akiyama, M., & Shibata, S. (2001). Restricted feeding entrains liver clock without participation of the suprachiasmatic nucleus.
Genes to Cells, 6(3), 269-278.
Heden, T. D., Kanaley, J. A. (2019). Syncing exercise with meals and circadian clocks.
Exercise and Sport Sciences Reviews, 47(1), 22-28.
Ho, S.-E, Bae, Y.-J., & Lee, M.-C. (2005). Physiological changes by circadian rhythm delay and nocturnal exercise effect. Journal of Coaching Development, 7(3), 79-86.
Holsboer, F. (2000). The corticosteroid receptor hypothesis of depression.
Neuropsychopharmacology, 23(5), 477-501.
Honma, K., Hikosaka, M., Mochizuki, K., & Goda, T. (2016). Loss of circadian rhythm of circulating insulin concentration induced by high-fat diet intake is associated with disrupted rhythmic expression of circadian clock genes in the liver.
Metabolism, 65(4), 482-491.
Hower, I. M., Harper, S. A., & Buford, T. W. (2018). Circadian rhythms, exercise, and cardiovascular health.
Journal of Circadian Rhythms, (16), 7.
Huang, Y., Xu, C., He, M., Huang, W., & Wu, K. (2020). Saliva cortisol, melatonin levels and circadian rhythm alterations in Chinese primary school children with dyslexia.
Medicine, 99(6), e19098.
Hutchison, A. T., Regmi, P., Manoogian, E. N. C., Fleischer, J. G., Wittert, G. A., Panda, S., & Heilbronn, L. K. (2019). Time-restricted feeding improves glucose tolerance in men at risk for type 2 diabetes: A randomized crossover trial.
Obesity, 27(5), 724-732.
Issa, G., Wilson, C., Terry, A. V., & Pillai, A. (2010). An inverse relationship between cortisol and BDNF levels in schizophrenia: Data from human postmortem and animal studies.
Neurobiology of Disease, 39(3), 327-333.
Itani, O., Jike, M., Watanabe, N., & Kaneita, Y. (2017). Short sleep duration and health outcomes: A systematic review, meta-analysis, and meta-regression.
Sleep Medicine, 32: 246-256.
Jamshed, H., Beyl, R. A., Della Manna, D. L., Yang, E. S., Ravussin, E., & Peterson, C. M. (2019). Early time-restricted feeding improves 24-hour glucose levels and affects markers of the circadian clock, aging, and autophagy in humans.
Nutrients, 11(6), 1234.
Jordan, S. D., Lamia, K. A. (2013). AMPK at the crossroads of circadian clocks and metabolism.
Molecular and cellular endocrinology, 366(2), 163-169.
Kajimoto, J., Matsumura, R., Node, K., & Akashi, M. (2018). Potential role of the pancreatic hormone insulin in resetting human peripheral clocks.
Genes to Cells, 23(5), 393-399.
Kettner, N. M., Mayo, S. A., Hua, J., Lee, C., Moore, D. D., & Fu, L. (2015). Circadian dysfunction induces leptin resistance in mice.
Cell Metabolism, 22(3), 448-459.
Kiessling, S., Eichele, G., & Oster, H. (2010). Adrenal glucocorticoids have a key role in circadian resynchronization in a mouse model of jet lag.
The Journal of Clinical Investigation, 120(7), 2600-2609.
Kline, C. E., Durstine, J. L., Davis, J. M., Moore, T. A., Devlin, T. M., Zielinski, M. R., & Youngstedt, S. D. (2007). Circadian variation in swim performance.
Journal of Applied Physiology, 102(2), 641-649.
Ko, C. H., Takahashi, J. S. (2006). Molecular components of the mammalian circadian clock.
Human Molecular Genetics, 15(suppl_2), R271-R277.
Kohsaka, A., Laposky, A. D., Ramsey, K. M., Estrada, C., Joshu, C., Kobayashi, Y., ... & Bass, J. (2007). High-fat diet disrupts behavioral and molecular circadian rhythms in mice.
Cell Metabolism, 6(5), 414-421.
Küüsmaa, M., Schumann, M., Sedliak, M., Kraemer, W. J., Newton, R. U., Malinen, J.-P., ... & Häkkinen, K. (2016). Effects of morning versus evening combined strength and endurance training on physical performance, muscle hypertrophy, and serum hormone concentrations.
Applied Physiology, Nutrition, and Metabolism, 41(12), 1285-1294.
Kwon, I., Lee, J., Chang, S. H., Jung, N. C., Lee, B. J., Son, G. H., ... & Lee, K. H. (2006). BMAL1 shuttling controls transactivation and degradation of the CLOCK/BMAL1 heterodimer.
Molecular and Cellular Biology, 26(19), 7318-7330.
Lamia, K. A., Storch, K.-F., & Weitz, C. J. (2008). Physiological significance of a peripheral tissue circadian clock.
Proceedings of the National Academy of Sciences, 105(39), 15172-15177.
Lee, J., Lee, S., Chung, S., Park, N., Son, G. H., An, H., ... & Kim, K. (2016). Identification of a novel circadian clock modulator controlling BMAL1 expression through a ROR/REV-ERB-response element-dependent mechanism.
Biochemical and Biophysical Research Communications, 469(3), 580-586.
Lee, S.-E. (2016). The effect of regular exercise participation on circulatory factors with circadian rhythm. The Korea Journal of Sports Science, 25(4), 1091-1098.
Leliavski, A., Dumbell, R., Ott, V., & Oster, H. (2015). Adrenal clocks and the role of adrenal hormones in the regulation of circadian physiology.
Journal of Biological Rhythms, 30(1), 20-34.
Leung, G. K. W., Huggins, C. E., & Bonham, M. P. (2019). Effect of meal timing on postprandial glucose responses to a low glycemic index meal: A crossover trial in healthy volunteers.
Clinical Nutrition, 38(1), 465-471.
Lewis, P., Korf, H. W., Kuffer, L., Groß, J. V., & Erren, T. C. (2018). Exercise time cues (zeitgebers) for human circadian systems can foster health and improve performance: a systematic review.
BMJ Open Sport and Exercise Medicine, 4(1), e000443.
Li, S., Zhang, L. (2015). Circadian control of global transcription.
BioMed Research International, 2015: 187809.
Longo, V. D., Panda, S. (2016). Fasting, circadian rhythms, and time-restricted feeding in healthy lifespan.
Cell Metabolism, 23(6), 1048-1059.
Mancilla, R., Krook, A., Schrauwen, P., & Hesselink, M. K. C. (2020). Diurnal regulation of peripheral glucose metabolism: Potential effects of exercise timing.
Obesity, 28(S1), S38-S45.
Melhuish Beaupre, L. M., Tiwari, A. K., Gonçalves, V. F., Zai, C. C., Marshe, V. S., Lewis, C. M., ... Major Depressive Disorder Working Group of the Psychiatric Genomics Consortium (2021). Potential genetic overlap between insomnia and sleep symptoms in major depressive disorder: A polygenic risk score analysis. Frontiers in Psychiatry, 12: 734077.
Melo, M. C. A., Garcia, R. F., Neto, V. B. L., Sá, M. B., de Mesquita, L. M. F., de Araújo, C. F. C., & de Bruin, V. M. S. (2016). Sleep and circadian alterations in people at risk for bipolar disorder: A systematic review.
Journal of Psychiatric Research, 83: 211-219.
Miyazaki, T., Hashimoto, S., Masubuchi, S., Honma, S., & Honma, K.-I. (2001). Phase-advance shifts of human circadian pacemaker are accelerated by daytime physical exercise.
American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 281(1), R197-R205.
Mora-Rodríguez, R., Pallarés, J. G., López-Gullón, J. M., López-Samanes, Á., Fernández-Elías, V. E., & Ortega, J. F. (2015). Improvements on neuromuscular performance with caffeine ingestion depend on the time-of-day.
Journal of Science and Medicine in Sport, 18(3), 338-342.
Mora-Rodríguez, R., Pallarés, J. G., López-Samanes, Á., Ortega, J. F., & Fernández-Elías, V. E. (2012). Caffeine ingestion reverses the circadian rhythm effects on neuromuscular performance in highly resistance-trained men.
PLoS One, 7(4), e33807.
Morris, C. J., Purvis, T. E., Mistretta, J., Hu, K., & Scheer, F. A. J. L. (2017). Circadian misalignment increases C-reactive protein and blood pressure in chronic shift workers.
Journal of Biological Rhythms, 32(2), 154-164.
Morris, C. J., Yang, J. N., Garcia, J. I., Myers, S., Bozzi, I., Wang, W., ... & Scheer, F. A. J. L. (2015). Endogenous circadian system and circadian misalignment impact glucose tolerance via separate mechanisms in humans.
Proceedings of the National Academy of Sciences, 112(17), E2225-E2234.
Morrison, M., Halson, S. L., Weakley, J., & Hawley, J. A. (2022). Sleep, circadian biology and skeletal muscle interactions: Implications for metabolic health, Sleep Medicine Reviews, 66: 101700.
Mouralidarane, A., Soeda, J., Sugden, D., Bocianowska, A., Carter, R., Ray, S., ... & Oben, J. A. (2015). Maternal obesity programs offspring non-alcoholic fatty liver disease through disruption of 24-h rhythms in mice.
International Journal of Obesity, 39(9), 1339-1348.
Nguyen, J., Wright, K. P. (2010). Influence of weeks of circadian misalignment on leptin levels.
Nature and Science of Sleep, 2: 9-18.
Oishi, K., Kasamatsu, M., & Ishida, N. (2004). Gene- and tissue-specific alterations of circadian clock gene expression in streptozotocin-induced diabetic mice under restricted feeding.
Biochemical and Biophysical Research Communications, 317(2), 330-334.
Okauchi, H., Hashimoto, C., Nakao, R., & Oishi, K. (2019). Timing of food intake is more potent than habitual voluntary exercise to prevent diet-induced obesity in mice.
Chronobiology International, 36(1), 57-74.
Panagiotou, M., Michel, S., Meijer, J. H., & Deboer, T. (2021). The aging brain: Sleep, the circadian clock and exercise.
Biochemical Pharmacology, 191: 114563.
Park, S. (2010). Ghrelin.
Endocrinology and Metabolism, 25(4), 258-263.
Pastore, S., Hood, D. A. (2013). Endurance training ameliorates the metabolic and performance characteristics of circadian clock mutant mice.
Journal of Applied Physiology, 114(8), 1076-1084.
Peek, C. B., Levine, D. C., Cedernaes, J., Taguchi, A., Kobayashi, Y., Tsai, S. J., ... & Bass, J. (2017). Circadian clock interaction with HIF1α mediates oxygenic metabolism and anaerobic glycolysis in skeletal muscle.
Cell Metabolism, 25(1), 86-92.
Perelis, M., Marcheva, B., Moynihan Ramsey, K., Schipma, M. J., Hutchison, A. L., Taguchi, A., ... & Bass, J. (2015). Pancreatic β cell enhancers regulate rhythmic transcription of genes controlling insulin secretion.
Science, 350(6261), aac4250.
Poirier, P., Tremblay, A., Catellier, C., Tancrède, G., Garneau, C., & Nadeau, A. (2000). Impact of time interval from the last meal on glucose response to exercise in subjects with type 2 diabetes.
The Journal of Clinical Endocrinology & Metabolism, 85(8), 2860-2864.
Richardson, C. E., Gradisar, M., Short, M. A., & Lang, C. (2017). Can exercise regulate the circadian system of adolescents? Novel implications for the treatment of delayed sleep-wake phase disorder.
Sleep Medicine Reviews, 34: 122-129.
Robinson, W. R., Pullinger, S. A., Kerry, J. W., Giacomoni, M., Robertson, C. M., Burniston, J. G., ... & Edwards, B. J. (2013). Does lowering evening rectal temperature to morning levels offset the diurnal variation in muscle force production?
Chronobiology International, 30(8), 998-1010.
Saner, N. J., Bishop, D. J., & Bartlett, J. D. (2018). Is exercise a viable therapeutic intervention to mitigate mitochondrial dysfunction and insulin resistance induced by sleep loss?
Sleep Medicine Reviews, 37: 60-68.
Saner, N. J., Lee, M. J.-C., Kuang, J., Pitchford, N. W., Roach, G. D., Garnham, A., ... & Bartlett, J. D. (2021). Exercise mitigates sleep-loss-induced changes in glucose tolerance, mitochondrial function, sarcoplasmic protein synthesis, and diurnal rhythms.
Molecular Metabolism, 43: 101110.
Scheer, F. A. J. L., Hu, K., Evoniuk, H., Kelly, E. E., Malhotra, A., Hilton, M. F., & Shea, S. A. (2010). Impact of the human circadian system, exercise, and their interaction on cardiovascular function.
Proceedings of the National Academy of Sciences, 107(47), 20541-20546.
Schroder, E. A., Esser, K. A. (2013). Circadian rhythms, skeletal muscle molecular clocks, and exercise.
Exercise and Sport Sciences Reviews, 41(4), 224-229.
Sen, A., Hoffmann, H. M. (2020). Role of core circadian clock genes in hormone release and target tissue sensitivity in the reproductive axis.
Molecular and Cellular Endocrinology, 501: 110655.
Son, B., Do, H., Kim, E., Youn, B., & Kim, W. (2017). Circadian clock genes, PER1 and PER2, as tumor suppressors. Journal of Life Science, 27(10), 1225-1231.
Son, G. H., Chung, S., & Kim, K. (2010). Biological rhythms and neuroendocrine systems.
Endocrinology and Metabolism, 25(4), 249-257.
St. John, P. C., Hirota, T., Kay, S. A., & Doyle III, F. J. (2014). Spatiotemporal separation of PER and CRY posttranslational regulation in the mammalian circadian clock.
Proceedings of the National Academy of Sciences, 111(5), 2040-2045.
Tal-Krivisky, K., Kronfeld-Schor, N., & Einat, H. (2015). Voluntary exercise enhances activity rhythms and ameliorates anxiety-and depression-like behaviors in the sand rat model of circadian rhythm-related mood changes.
Physiology & Behavior, 151: 441-447.
Tan, D.-X., Manchester, L. C., Fuentes-Broto, L., Paredes, S. D., & Reiter, R. J. (2011). Significance and application of melatonin in the regulation of brown adipose tissue metabolism: Relation to human obesity.
Obesity Reviews, 12(3), 167-188.
Tangestani, H., Emamat, H., Yekaninejad, M. S., Keshavarz, S. A., & Mirzaei, K. (2021). Variants in circadian rhythm gene Cry1 interacts with healthy dietary pattern for serum leptin levels: A cross-sectional study.
Clinical Nutrition Research, 10(1), 48-58.
Taniguchi, H., Fernández, A. F., Setién, F., Ropero, S., Ballestar, E., Villanueva, A., ... & Esteller, M. (2009). Epigenetic inactivation of the circadian clock gene BMAL1 in hematologic malignancies.
Cancer Research, 69(21), 8447-8454.
Thun, E., Waage, S., Bjorvatn, B., Moen, B. E., Vedaa, Ø., Blytt, K. M., & Pallesen, S. (2021). Short sleep duration and high exposure to quick returns are associated with impaired everyday memory in shift workers.
Nursing Outlook, 69(3), 293-301.
Tordjman, S., Anderson, G. M., Kermarrec, S., Bonnot, O., Geoffray, M.-M., Brailly-Tabard, S., ... & Touitou, Y. (2014). Altered circadian patterns of salivary cortisol in low-functioning children and adolescents with autism.
Psychoneuroendocrinology, 50: 227-245.
Um, J.-H., Pendergast, J. S., Springer, D. A., Foretz, M., Viollet, B., Brown, A., ... & Chung, J. H. (2011). AMPK regulates circadian rhythms in a tissue- and isoform-specific manner.
PLoS One, 6(3), e18450.
Van Someren, E. J. W. (2000). Circadian and sleep disturbances in the elderly.
Experimental Gerontology, 35(9-10), 1229-1237.
Van Someren, E. J. W., Lijzenga, C., Mirmiran, M., & Swaab, D. F. (1997). Long-term fitness training improves the circadian rest-activity rhythm in healthy elderly males.
Journal of Biological Rhythms, 12(2), 146-156.
Villanueva, J. E., Livelo, C., Trujillo, A. S., Chandran, S., Woodworth, B., Andrade, L., ... & Melkani, G. C. (2019). Time-restricted feeding restores muscle function in drosophila models of obesity and circadian-rhythm disruption.
Nature Communications, 10(1), 2700.
Wang, D., Chen, S., Liu, M., & Liu, C. (2015). Maternal obesity disrupts circadian rhythms of clock and metabolic genes in the offspring heart and liver.
Chronobiology International, 32(5), 615-626.
Wick, G., Hu, Y., Schwarz, S., & Kroemer, G. (1993). Immunoendocrine communication via the hypothalamo-pituitary-adrenal axis in autoimmune diseases.
Endocrine Reviews, 14(5), 539-563.
Wilkinson, M. J., Manoogian, E. N. C., Zadourian, A., Lo, H., Fakhouri, S., Shoghi, A., ... & Taub, P. R. (2020). Ten-hour time-restricted eating reduces weight, blood pressure, and atherogenic lipids in patients with metabolic syndrome.
Cell Metabolism, 31(1), 92-104.
Wolff, C. A., Esser, K. A. (2019). Exercise timing and circadian rhythms.
Current Opinion in Physiology, 10: 64-69.
Wolff, G., Esser, K. A. (2012). Scheduled exercise phase shifts the circadian clock in skeletal muscle.
Medicine and Science in Sports and Exercise, 44(9), 1663-1670.
Xie, X., Yang, S., Zou, Y., Cheng, S., Wang, Y., Jiang, Z., ... & Liu, Y. (2013). Influence of the core circadian gene “clock” on obesity and leptin resistance in mice.
Brain Research, 1491: 147-155.
Yang, C.-K. (1998). Pharmacological treatment of insomnia. Journal of the Korean Society of Biological Therapies in Psychiatry, 4(1), 103-117.
Yeung, C.-Y. C., Schjerling, P., Heinemeier, K. M., Boesen, A. P., Dideriksen, K., & Kjær, M. (2019). Investigating circadian clock gene expression in human tendon biopsies from acute exercise and immobilization studies.
European Journal of Applied Physiology, 119(6), 1387-1394.
Yoo, S.-H., Yamazaki, S., Lowrey, P. L., Shimomura, K., Ko, C. H., Buhr, E. D., ... & Takahashi, J. S. (2004). PERIOD2::LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues.
Proceedings of the National Academy of Sciences, 101(15), 5339-5346.
Yoon, J.-A., Han, D.-H., Noh, J.-Y., Kim, M.-H., Son, G. H., Kim, K., ... & Cho, S. (2012). Meal time shift disturbs circadian rhythmicity along with metabolic and behavioral alterations in mice.
PLoS One, 7(8), e44053.
Youngstedt, S. D., Kline, C. E., Elliott, J. A., Zielinski, M. R., Devlin, T. M., & Moore, T. A. (2016). Circadian phase-shifting effects of bright light, exercise, and bright light + exercise.
Journal of Circadian Rhythms, 14: 2.
Zanquetta, M. M., Seraphim, P. M., Sumida, D. H., Cipolla-Neto, J., & Machado, U. F. (2003). Calorie restriction reduces pinealectomy-induced insulin resistance by improving GLUT4 gene expression and its translocation to the plasma membrane.
Journal of Pineal Research, 35(3), 141-148.
Zhang, R., Lahens, N. F., Ballance, H. I., Hughes, M. E., & Hogenesch, J. B. (2014). A circadian gene expression atlas in mammals: Implications for biology and medicine.
Proceedings of the National Academy of Sciences, 111(45), 16219-16224.