1. Beidleman, B. A., Muza, S. R., Fulco, C. S., Jones, J. E., Lammi, E., Staab, J. E., et al, & Cymerman, A. 2009; Intermittent hypoxic exposure does not improve endurance performance at altitude. Medicine & Science in Sports & Exercise 41(6), 1317-1325.
2. Czuba, M., Zając, A., Maszczyk, A., Roczniok, R., Poprzęcki, S., Garbaciak, W., et al, & Zając, T. (2013). The effects of high intensity interval training in normobaric hypoxia on aerobic capacity in basketball players.
Journal of human kinetics, 39(1), 103-114. DOI:
10.2478/hukin-2013-0073.
3. Dufour, S. P., Ponsot, E., Zoll, J., Doutreleau, S., Lonsdorfer-Wolf, E., Geny, B., Lampert, E., Flück, M., Hoppeler, H., Billat, V., Mettauer, B., Richard, R., & Lonsdorfer, J. (2006). Exercise training in normobaric hypoxia in endurance runners. I. Improvement in aerobic performance capacity.
Journal of Applied Physiology, 100(4), 1238-1248. DOI:
10.1152/japplphysiol.00742.2005.
4. Faiss, R., Léger, B., Vesin, J. M., Fournier, P. E., Eggel, Y., Dériaz, O., et al, & Millet, G. P. (2013). Significant molecular and systemic adaptations after repeated sprint training in hypoxia.
PLoS One, 8(2), e56522 DOI:
10.1371/journal.pone.0056522.
5. Galvin, H. M., Cooke, K., Sumners, D. P., Mileva, K. N., et al, & Bowtell, J. L. (2013). Repeated sprint training in normobaric hypoxia.
British Journal of Sports Medicine, 47(Suppl 1), i74-i79. DOI:
10.1136/bjsports-2013-092826.
6. Hamlin, M. J., Marshall, H. C., Hellemans, J., Ainslie, P. N., et al, & Anglem, N. (2010). Effect of intermittent hypoxic training on 20 km time trial and 30 s anaerobic performance.
Scandinavian Journal of Medicine & Science in Sports, 20(4), 651-661. DOI:
10.1111/j.1600-0838.2009.00946.x.
7. Hendriksen, I. J., et al, & Meeuwsen, T. (2003). The effect of intermittent training in hypobaric hypoxia on sea-level exercise: a cross-over study in humans.
European Journal of Applied Physiology, 88(4-5), 396-403. DOI:
10.1007/s00421-002-0708-z.
8. Katayama, K., Sato, K., Matsuo, H., Ishida, K., Iwasaki, K. I., et al, & Miyamura, M. (2004). Effect of intermittent hypoxia on oxygen uptake during submaximal exercise in endurance athletes.
European Journal of Applied Physiology, 92(1-2), 75-83. DOI:
10.1007/s00421-004-1054-0.
9. Kime, R., Karlsen, T., Nioka, S., Lech, G., Madsen, Ø., Sæterdal, R., Im, J., Chance, B., et al, & Stray-Gundersen, J. (2003). Discrepancy between cardiorespiratory system and skeletal muscle in elite cyclists after hypoxic training. Dynamic Medicine, 2(1), 4.
10. Mao, T. Y., Fu, L. L., et al, & Wang, J. S. (2011). Hypoxic exercise training causes erythrocyte senescence and rheological dysfunction by depressed Gardos channel activity.
Journal of Applied Physiology, 111(2), 382-391. DOI:
10.1152/japplphysiol.00096.2011.
11. McLean, B. D., Gore, C. J., & Kemp, J. (2014). Application of ‘Live Low-Train High’ for enhancing normoxic exercise performance in team sport athletes.
Sports Medicine, 44(9), 1275-1287. DOI:
10.1007/s40279-014-0204-8.
12. Meeuwsen, T., Hendriksen, I. J., & Holewijin, M. (2001). Training-induced increases in sea-level performance are enhanced by acute intermittent hypobaric hypoxia.
European Journal of Applied Physiology, 84(4), 283-290. DOI:
10.1007/s004210000363.
13. Miyashita, M., Mutoh, Y., Yoshika, Y., & Sadamoto, T. (1985). Effects of physical training. Medicine & Science in Sports & Exercise, 1: 3-5.
14. Park, H., Hwang, H., Park, J., Lee, S., et al, & Lim, K. (2016a). The effects of altitude/hypoxic training on oxygen delivery capacity of the blood and aerobic exercise capacity in elite athletes - a meta analysis.
Journal of Exercise Nutrition & Biochemistry, 20(1), 15-22. DOI:
10.20463/jenb.2016.03.20.1.3.
15. Park, H. Y., Nam, S. S., Tanaka, H., & Lee, D. J. (2016b). Hemodynamic, Hematological, and Hormonal Responses to Submaximal Exercise in Normobaric Hypoxia in Pubescent Girls.
Pediatric Exercise Science, 28(3), 417-422. DOI:
10.1123/pes.2015-0176.
16. Park, H. Y., Sunoo, S., & Nam, S. S. (2016c). The effect of 4 weeks fixed and mixed intermittent hypoxic training (IHT) on respiratory metabolic and acid-base response of capillary blood during submaximal bicycle exercise in male elite Taekwondo players.
Journal of Exercise Nutrition & Biochemistry, 20(4), 35-43. DOI:
10.20463/jenb.2016.12.20.4.1.
17. Ponsot, E., Dufour, S. P., Zoll, J., Doutrelau, S., N'Guessan, B., Geny, B., Hoppeler, H., Lampert, E., Mettauer, B., Ventura-Clapier, R., & Richard, R. (2006). Exercise training in normobaric hypoxia in endurance runners. II. Improvement of mitochondrial properties in skeletal muscle.
Journal of Applied Physiology, 100(4), 1249-1257. DOI:
10.1152/japplphysiol.00361.2005.
18. Puype, J., Van Proeyen, K., Raymackers, J. M., Deldicque, L., et al, & Hespel, P. (2013). Sprint interval training in hypoxia stimulates glycolytic enzyme activity.
Medicine & Science in Sports & Exercise, 45(11), 2166-2174. DOI:
10.1249/mss.0b013e31829734ae.
19. Rodriguez, F., Truijens, M. J., Townsend, N. E., Stray-Gundersen, J., Gore, C. J., & Levine, B. D. (2007). Performance of runners and swimmers after four weeks of intermittent hypobaric hypoxic exposure plus sea level training. (5), 1523-1535.
20. Roels, B., Bentley, D. J., Coste, O., Mercier, J., & Millet, G. P. (2007). Effects of intermittent hypoxic training on cycling performance in well-trained athletes.
Eurpean Journal of Applied Physiology, 101(3), 359-368. DOI:
10.1007/s00421-007-0506-8.
21. Schmutz, S., Dapp, C., Wittwer, M., Durieux, A. C., Mueller, M., Weinstein, F., Vogt, M., Hoppeler, H., et al, & Flück, M. (2010). A hypoxia complement differentiates the muscle response to endurance exercise.
Experimental physiology, 95(6), 723-735. DOI:
10.1113/expphysiol.2009.051029.
22. Sinex, J. A., et al, & Chapman, R. F. (2015). Hypoxic training methods for improving endurance exercise performance.
Journal of Sport and Health Science, 4(4), 325-332. DOI:
10.1016/j.jshs.2015.07.005.